Учимся строить сечения. Сечение

В ходе урока все желающие смогут получить представление о теме « Задачи на построение сечений в параллелепипеде». Вначале мы повторим четыре основные опорные свойства параллелепипеда. Затем, используя их, решим некоторые типовые задачи на построение сечений в параллелепипеде и на определение площади сечения параллелепипеда.

Тема: Параллельность прямых и плоскостей

Урок: Задачи на построение сечений в параллелепипеде

В ходе урока все желающие смогут получить представление о теме «Задачи на построение сечений в параллелепипеде» .

Рассмотрим параллелепипед АВСDА 1 B 1 C 1 D 1 (рис. 1). Вспомним его свойства.

Рис. 1. Свойства параллелепипеда

1) Противоположные грани (равные параллелограммы) лежат в параллельных плоскостях.

Например, параллелограммы АВСD и А 1 B 1 C 1 D 1 равны (то есть их можно совместить наложением) и лежат в параллельных плоскостях.

2) Длины параллельных ребер равны.

Например, AD = BC = A 1 D 1 = B 1 C 1 (рис. 2).

Рис. 2. Длины противоположных ребер параллелепипеда равны

3) Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.

Например, диагонали параллелепипеда BD 1 и B 1 D пересекаются в одной точке и делятся этой точкой пополам (рис. 3).

4) В сечение параллелепипеда может быть треугольник, четырехугольник, пятиугольник, шестиугольник.

Задача на сечение параллелепипеда

Например, рассмотрим решение следующей задачи. Дан параллелепипед АВСDА 1 B 1 C 1 D 1 и точки M, N, K на ребрах AA 1 , A 1 D 1 , A 1 B 1 соответственно (рис. 4). Постройте сечения параллелепипеда плоскостью MNK. Точки M и N одновременно лежат в плоскости AA 1 D 1 и в секущей плоскости. Значит, MN - линия пересечения двух указанных плоскостей. Аналогично получаем MK и KN. То есть, сечением будет треугольник MKN.

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил.

Задания 13, 14, 15 стр. 50

2. Дан параллелепипед АВСDА 1 B 1 C 1 D 1 . М и N - середины ребер DC и A 1 B 1 .

а) Постройте точки пересечения прямых АМ и AN плоскостью грани ВВ 1 С 1 С.

б) Постройте линию пересечения плоскостей AMN и ВВ 1 С 1

3. Постройте сечения параллелепипеда АВСDА 1 B 1 C 1 D 1 плоскостью, проходящей через ВС 1 и середину М ребра DD 1 .

Задачи на построение сечений многогранников занимают значительное место как школьном курсе геометрии для старших классов, так и на экзаменах разного уровня. Решение этого вида задач способствует усвоению аксиом стереометрии, систематизации знаний и умений, развитию пространственного представления и конструктивных навыков. Общеизвестны трудности, возникающие при решении задач на построение сечений.

С самого раннего детства мы сталкиваемся с сечениями. Режем хлеб, колбасу и другие продукты, обстругиваем палочку или карандаш ножом. Секущей плоскостью во всех этих случаях является плоскость ножа. Сечения (срезы кусочков) оказываются различными.

Сечение выпуклого многогранника есть выпуклый многоугольник, вершины которого в общем случае являются точками пересечения секущей плоскости с ребрами многоугольника, а стороны- линиями пересечения секущей плоскости с гранями.

Для построения прямой пересечения двух плоскостей достаточно найти две общие точки этих плоскостей и провести через них прямую. Это основано на следующих утверждениях:

1.если две точки прямой принадлежат плоскости, то и вся прямая принадлежит этой плоскости;

2.если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.

Как я уже сказал ппостроение сечений многогранников можно осуществлять на основании аксиом стереометрии и теорем о параллельности прямых и плоскостей. Вместе с тем, существуют определенные методы построения плоских сечений многогранников. Наиболее эффективными являются следующие три метода:

Метод следов

Метод внутреннего проектирования

Комбинированный метод.

В изучении геометрии и, в особенности, тех её разделов, где рассматриваются изображения геометрических фигур, изображения геометрических фигур помогают использования компьютерных презентаций. С помощью компьютера многие уроки геометрии становятся более наглядной и динамичной. Аксиомы, теоремы, доказательства, задачи на построения, задачи на построения сечений можно сопровождать последовательными построениями на экране монитора. Сделанные с помощью компьютера чертежи можно сохранять и вставлять их в другие документы.

Хочу показать несколько слайдов по теме: «Построения сечений в геометрических телах»

Для построения точки пересечения прямой и плоскости находят в плоскости прямую, пересекающую данную прямую. Тогда искомая точка является точкой пересечения найденной прямой с данной. Проследим это на следующих слайдах.

Задача 1.

На ребрах тетраэдра DABC отмечены две точки М и N; М GAD, N б DC. Укажите точку пересечения прямой MN с плоскостью основания.

Решение: для того, чтобы найти точку пересечения прямой MN с плоскостью

основания мы продолжим АС и отрезок MN. Отметим точку пересечения этих прямых через X. Точка X принадлежит прямой MN и грани АС, а АС лежит в плоскости основания, значит точка X тоже лежит в плоскости основания. Следовательно, точка X есть точка пересечения прямой MN с плоскостью основания.

Рассмотрим вторую задачу. Немного усложним его.

Задача 2.

Дан тетраэдр DABC точки М и N, где М € DA, N С (DBC). Найти точку пересечения прямой MN с плоскостью ABC .

Решение: точка пересечения прямой MN с плоскостью ABC должна лежать в плоскости, которая содержит прямую MN и в плоскости основания. Продолжим отрезок DN до точки пересечения с ребром DC. Точку пересечения отметим через Е. Продолжим прямую АЕ и MN до точки их пересечения. Отметим X. Точка X принадлежит MN, значит она лежит на плоскости которая содержит прямую MN и X принадлежит АЕ, а АЕ лежит на плоскости ABC. Значит X тоже лежит в плоскости ABC. Следовательно X и есть точка пересечения прямой MN и плоскости ABC.

Усложним задачу. Рассмотрим сечение геометрических фигур плоскостями, проходящими через три данные точки.

Задача 3

На ребрах AC, AD и DB тетраэдра DABC отмечены точки М, N и Р. Построить сечение тетраэдра плоскостью MNP.

Решение: построим прямую, по которой плоскость MNP. Пересекается с плоскостью грани ABC. Точка М является общей точкой этих плоскостей. Для построения ещё одной общей точки продолжим отрезок АВ и NP. Точку пересечения отметим через X, которая и будет второй общей точкой плоскости MNP и ABC. Значит эти плоскости пересекаются по прямой MX . MX пересекает ребро ВС в некоторой точке Е. Так как Е лежит на MX, а MX прямая принадлежащей плоскости MNP, значит РЕ принадлежит MNP. Четырёхугольник MNPE искомое сечение.

Задача 4

Построим сечение прямой призмы АВСА1В1С1 плоскостью проходящей через точки P, Q ,R, где R принадлежит (AA 1C 1C ), Р принадлежит В 1С1,

Q принадлежит АВ

Решение: Все три точки P,Q,R лежат в разных гранях, поэтому построить линию пересечения секущей плоскости с какой- либо гранью призмы мы пока не можем. Найдем точку пересечения PR с ABC. Найдем проекции точек Р и R на плоскость основания PP1 перпендикулярно ВС и RR1 перпендикулярна АС. Прямая P1R1 пересекается с прямой PR в точке X. X точка пересечения прямой PR с плоскостью ABC. Она лежит в искомой плоскости К ив плоскости основания, как и точка Q. XQ- прямая пересекающая К с плоскостью основания. XQ пересекает АС в точке К. Следовательно, KQ отрезок пересечения плоскости Х с гранью ABC. К и R лежат в плоскости Х и в плоскости грани АА1С1С. Проведем прямую KR и точку пересечения с A1Q отметим Е. КЕ является линией пересечения плоскости Х с этой гранью. Найдем линию пересечения плоскости Х с плоскостью граней BB1A1A. КЕ пересекается с А1А в точке У. Прямая QY есть линия пересечения секущей плоскости с плоскостью AA1B1B. FPEKQ- искомое сечение.

Цели урока: рассмотреть решение задач на построение сечений, если две точки сечения принадлежат одной грани.

Ход урока

Изучение новых понятий
Определение 1.
Секущая плоскость многогранника - любая плоскость, по обе стороны от которой имеются точки данного многогранника.
Определение 2. Сечение многогранника - это многоугольник, сторонами которого являются отрезки, по которым секущая плоскость пересекает грани многогранника.
Задание. Назовите отрезки, по которым секущая плоскость пересекает грани параллелепипеда (рис. 1). Назовите сечение параллелепипеда.

Основные действия при построении сечений

Теоретическая основа

Ответ

1. Как проверить: построено сечение или нет Определение сечения Это должен быть многоугольник, стороны которого принадлежат граням многогранника
2. До начала работы определить: можно ли по данным задачи построить сечение Способы задания плоскости Можно, если данные элементы задают однозначно плоскость, то есть даны три точки, не лежащие на одной прямой, точка и прямая и т.д.
3. В плоскости какой-то грани есть две точки секущей плоскости
Если две точки принадлежат плоскости, то вся прямая принадлежит плоскости Через эти точки провести прямую
4. В одной из параллельных граней есть сторона сечения, а в другой - точка сечения Свойство параллельных плоскостей Через эту точку провести прямую, параллельную данной
5. В одной грани есть точка сечения и известно, что секущая плоскость проходит через прямую, параллельную этой грани Признак параллельности прямой и плоскости. Свойство параллельных плоскостей Построить прямую пересечения плоскостей, параллельную данной прямой
6. Две точки сечения принадлежат одной грани, а третья точка лежит в смежной Аксиомы стереометрии Секущая плоскость пересекает грани по отрезкам OC и AB, которые называются следом секущей плоскости на гранях

Решение задач

Задача 1. Какой из четырехугольников, EFKM или EFKL, может быть сечением данного многогранника (рис. 2)? Почему?

Задача 2. Ученик изобразил сечение тетраэдра (рис. 3). Возможно ли такое сечение?

Решение . Нужно доказать, что N, M и H, L лежат в одной плоскости. Пусть точки N и M принадлежат задней грани, H и L - нижней грани, то есть точка пересечения NM и HL должна лежать на прямой, принадлежащей обеим граням, то есть AC. Продлим прямые NM и HL и найдем точку их пересечения. Эта точка не будет принадлежать прямой AC. Значит, точки N, M, L, H не образуют плоский многоугольник. Невозможно.

Задача 3. Построить сечение тетраэдра ABCS плоскостью, проходящей через точки K, L, N, где K и N - середины ребер SA и SB соответственно (рис. 4).

1. В какой грани можно построить стороны сечения?

2. Выбираем одну из точек, на которой оборвалось сечение.
Решение. Способ I. Выбираем точку L.
Определяем грань, в которой лежит выбранная точка и в которой надо построить сечение.

Определяем грань, в которой лежит прямая KN, не проходящая через выбранную точку L.

Находим линию пересечения граней ABC и ASB.

Каково взаимное расположения прямых KN и AB (рис. 5)?
[Параллельны.]

Что нужно построить, если секущая плоскость проходит через прямую, параллельную линии пересечения плоскостей?
[Через точку L провести прямую, параллельную AB. Эта прямая пересекает ребро CB в точке P.]
Соединяем точки, принадлежащие одной грани. KLPN - искомое сечение.
Способ II . Выбираем точку N (рис. 6).


Определяем грани, в которых лежат точка N и прямая KL.

Линией пересечения этих плоскостей будет прямая SC. Находим точку пересечения прямых KL и SC. Обозначим ее Y.
Соединяем точки N и Y. Прямая NY пересекает ребро CB в точке P.
Соединяем точки, принадлежащие одной грани.
KLNP - искомое сечение.
Объясните данное решение.
Один учащийся работает у доски, остальные в тетрадях.

Задача 4 . Построить сечение параллелепипеда, проходящее через точки M, P и H, H ` (A1B1C1) (рис. 7).

Решение. 1. Соедините точки, принадлежащие одной грани.
2. Какую прямую и точку выбираем для построения сечения?
3. Что определяем дальше?
4. Каково взаимное расположение выбранной прямой и линии пересечения граней (рис. 8)?

5. Как построить след секущей плоскости на грани B1C1D1A1, проходящий через точку H?
6. Соедините точки, принадлежащие одной грани.
7. Какую прямую и точку нужно выбрать для построения следа секущей плоскости на грани AA1D1D?
8. Каково взаимное расположение граней BB1C1C и AA1D1D?
9. Каким свойством необходимо воспользоваться для построения следа секущей плоскости на грани AA1D1D?
10. Назовите искомое сечение.

Задача 5. Построить сечение пирамиды SABCD, проходящее через точки M, P и H,
H` (ABC) (рис. 9).

Ответ: см. рисунок 10.

Задание на дом

Задача . Как изменятся построения, если точ-
ка H изменит свое положение? Построить сечения, используя разные варианты (рис. 11).

Метод сечений многогранников в стереометрии используется в задачах на построение. В его основе лежит умение строить сечение многогранника и определять вид сечения.

Данный материал характеризуется следующим особенностями:

  1. Метод сечений применяется только для многогранников, так как различные сложные (наклонные) виды сечений тел вращения не входят в программу средней школы.
  2. В задачах используются в основном простейшие многогранники.
  3. Задачи представлены в основном без числовых данных, чтобы создать возможность их многовариантного использования.

Чтобы решить задачу построения сечения многогранника ученик должен знать:

  • что значит построить сечение многогранника плоскостью;
  • как могут располагаться относительно друг друга многогранник и плоскость;
  • как задается плоскость;
  • когда задача на построение сечения многогранника плоскостью считается решенной.

Поскольку плоскость определяется:

  • тремя точками;
  • прямой и точкой;
  • двумя параллельными прямыми;
  • двумя пересекающимися прямыми,

построение плоскости сечения проходит в зависимости от задания этой плоскости. Поэтому все способы построения сечений многогранников можно разделить на методы.

Существует три основных метода построения сечений многогранников:

  1. Метод следов.
  2. Метод вспомогательных сечений.
  3. Комбинированный метод.

Первые два метода являются разновидностями Аксиоматического метода построения сечений.

Можно также выделить следующие методы построения сечений многогранников:

  • построение сечения многогранника плоскостью, проходящей через заданную точку параллельно заданной плоскости;
  • построение сечения, проходящего через заданную прямую параллельно другой заданной прямой;
  • построение сечения, проходящего через заданную точку параллельно двум заданным скрещивающимся прямым;
  • построение сечения многогранника плоскостью, проходящей через заданную прямую перпендикулярно заданной плоскости;
  • построение сечения многогранника плоскостью, проходящей через заданную точку перпендикулярно заданной прямой.

В федеральный перечень учебников по геометрии для 10-11 класов входят учебники авторов:

  • Атанасяна Л.С., Бутузова В.Ф., Кадомцева С.Б. и др (Геометрия, 10-11);
  • Погорелова А.В. (Геометрия, 7-11);
  • Александрова А.Д., Вернера А.Л., Рыжик В.И. (Геометрия, 10-11);
  • Смирновой И.М. (Геометрия, 10-11);
  • Шарыгина И.Ф. (Геометрия, 10-11).

Рассмотрим подробнее учебники Л.С, Атанасяна и Погорелова А.В.

В учебнике Л.С. Атанасяна на тему “Построение сечений многогранников” выделено два часа. В 10 классе в теме “Параллельность прямых и плоскостей” после изучения тетраэдра и параллелепипеда отводится один час на изложение параграфа “Задачи на построение сечений”. Рассматриваются сечения тетраэдра и параллелепипеда. И тема “Параллельность прямых и плоскостей” завершается решением задач на одном или двух часах (всего задач на построение сечений в учебнике восемь).

В учебнике Погорелова А.В. на построение сечений отводится около трех часов в главе “Многогранники”: один – на изучение темы “Изображение призмы и построение ее сечений”, второй – на изучение темы “Построение пирамиды и ее плоских сечений” и третий – на решение задач. В списке задач, приведенных после темы, задач на сечение насчитывается всего около десяти.

Мы предлагаем систему уроков по теме “Построение сечений многогранников” для учебника Погорелова А.В.

Материал предлагается расположить в той последовательности, в какой он может применяться для обучения учащихся. Из изложения темы “Многогранники” предлагается исключить следующие параграфы: “Построение сечений призмы” и “Построение сечений пирамиды” с тем, чтобы систематизировать данный материал в конце этой темы “Многогранники”. Классифицировать его по тематике задач с примерным соблюдением принципа “от простого к сложному” можно весьма условно следующим образом:

  1. Определение сечения многогранников.
  2. Построение сечений призмы, параллелепипеда, пирамиды методом следов. (Как правило в школьном курсе стереометрии используются задачи на построение сечений многогранников, решаемые основными методами. Остальные методы, в связи с их более высоким уровнем сложности, учитель может оставить для рассмотрения на факультативных занятиях или на самостоятельное изучение. В задачах на построение основными методами требуется построить плоскость сечения, проходящую через три точки).
  3. Нахождение площади сечений в многогранниках (без использования теоремы о площади ортогональной проекции многоугольника).
  4. Нахождение площади сечений в многогранниках (с применением теоремы о площади ортогональной проекции многоугольника).

СТЕРЕОМЕТРИЧЕСКИЕ ЗАДАЧИ НА ПОСТРОЕНИЕ СЕЧЕНИЙ МНОГОГРАННИКОВ И МЕТОДИКА ИХ ИСПОЛЬЗОВАНИЯ НА УРОКАХ В 10-11 КЛАССАХ.

(система уроков и факультативных занятий по теме “Построение сечений многогранников”)

УРОК 1.

Тема урока: “Построение сечений многогранников”.

Цель урока: ознакомление с методами построений сечений многогранников.

Этапы урока:

  1. Актуализация опорных знаний.
  2. Постановка задачи.
  3. Изучение нового материала:

А) Определение сечения.

Б) Методы построений сечений:

а) метод следов;

б) метод вспомогательных сечений;

в) комбинированный метод.

  1. Закрепление материала.

Примеры построений сечений методом следов.

  1. Подведение итогов урока.

Ход урока.

  1. Актуализация опорных знаний.
  2. Вспомним:
    - пересечение прямой с плоскостью;
    - пересечение плоскостей;
    - свойства параллельных плоскостей.

  3. Постановка задачи.
  4. Вопросы к классу:
    - Что значит построить сечение многогранника плоскостью?
    - Как могут располагаться относительно друг друга многогранник и плоскость?
    - Как задается плоскость?
    - Когда задача на построение сечения многогранника плоскостью считается решенной?

  5. Изучение нового материала.
  6. А) Итак, задача состоит в построении пересечения двух фигур: многогранника и плоскости (рис.1). Это могут быть: пустая фигура (а), точка (б), отрезок (в), многоугольник (г). Если пересечение многогранника и плоскости есть многоугольник, то этот многоугольник называется сечением многогранника плоскостью.

Будем рассматривать только случай, когда плоскость пересекает многогранник по его внутренности. При этом пересечением данной плоскости с каждой гранью многогранника будет некоторый отрезок. Таким образом, задача считается решенной, если найдены все отрезки, по которым плоскость пересекает грани многогранника.

Исследуйте сечения куба (рис.2) и ответьте на следующие вопросы:

Какие многоугольники получаются в сечении куба плоскостью? (Важно число сторон многоугольника);

[ Предполагаемые ответы: треугольник, четырехугольник, пятиугольник, шестиугольник.]

Может ли в сечении куба плоскостью получиться семиугольник? А восьмиугольник и т.д.? Почему?

Давайте рассмотрим призму и ее возможные сечения плоскостью (на модели). Какие многоугольники получаются?

Какой можно сделать вывод? Чему равно наибольшее число сторон многоугольника, полученного сечением многогранника с плоскостью?

[ Наибольшее число сторон многоугольника, полученного в сечении многогранника плоскостью, равно числу граней многогранника.]

Б) а) Метод следов заключается в построении следов секущей плоскости на плоскость каждой грани многогранника. Построение сечения многогранника методом следов обычно начинают с построения так называемого основного следа секущей плоскости, т.е. следа секущей плоскости на плоскости основания многогранника.

б) Метод вспомогательных сечений построения сечений многогранников является в достаточной мере универсальным. В тех случаях, когда нужный след (или следы) секущей плоскости оказывается за пределами чертежа, этот метод имеет даже определенные преимущества. Вместе с тем следует иметь ввиду, что построения, выполняемые при использовании этого метода, зачастую получаются “скученными”. Тем не менее в некоторых случаях метод вспомогательных сечений оказывается наиболее рациональным.

Метод следов и метод вспомогательных сечений являются разновидностями аксиоматического метода построения сечений многогранников плоскостью.

в) Суть комбинированного метода построения сечений многогранников состоит в применении теорем о параллельности прямых и плоскостей в пространстве в сочетании с аксиоматическим методом.

А теперь на примере решения задач рассмотрим метод следов.

4. Закрепление материала.

Задача 1.

Построить сечение призмы ABCDA 1 B 1 C 1 D 1 плоскостью, проходящей через точки P, Q, R (точки указаны на чертеже (рис.3)).

Решение.

Рис. 3

  1. Построим след секущей плоскости на плоскость нижнего основания призмы. Рассмотрим грань АА 1 В 1 В. В этой грани лежат точки сечения P и Q. Проведем прямую PQ.
  2. Продолжим прямую PQ, которая принадлежит сечению, до пересечения с прямой АВ. Получим точку S 1 , принадлежащую следу.
  3. Аналогично получаем точку S 2 пересечением прямых QR и BC.
  4. Прямая S 1 S 2 - след секущей плоскости на плоскость нижнего основания призмы.
  5. Прямая S 1 S 2 пересекает сторону AD в точке U, сторону CD в точке Т. Соединим точки P и U, так как они лежат в одной плоскости грани АА 1 D 1 D. Аналогично получаем TU и RT.
  6. PQRTU – искомое сечение.

Построить сечение параллелепипеда ABCDA 1 B 1 C 1 D 1 плоскостью, проходящей через точки M, N, P (точки указаны на чертеже (рис.4)).

Решение.

  1. Точки N и P лежат в плоскости сечения и в плоскости нижнего основания параллелепипеда. Построим прямую, проодящую через эти точки. Эта прямая является следом секущей плоскости на плоскость основания параллелепипеда.
  2. Продолжим прямую, на которой лежит сторона AB параллелепипеда. Прямые AB и NP пересекутся в некоторой точке S. Эта точка принадлежит плоскости сечения.
  3. Так как точка M также принадлежит плоскости сечения и пересекает прямую АА 1 в некоторой точке Х.
  4. Точки X и N лежат в одной плоскости грани АА 1 D 1 D, соединим их и получим прямую XN.
  5. Так как плоскости граней параллелепипеда параллельны, то через точку M можно провести прямую в грани A 1 B 1 C 1 D 1 , параллельную прямой NP. Эта прямая пересечет сторону В 1 С 1 в точке Y.
  6. Аналогично проводим прямую YZ, параллельно прямой XN. Соединяем Z с P и получаем искомое сечение – MYZPNX.

Задача 3 (для самостоятельного решения).

Построить сечение тетраэдра DACB плоскостью, проходящей через точки M, N, P (точки указаны на чертеже (рис.5)).

5. Подведение итогов урока.

Ответьте на вопрос: являются ли закрашенные фигуры сечениями изображенных многогранников плоскостью PQR? И выполните правильное построение (рис. 6).

Вариант 1.

Вариант 2.

Тема урока: НАХОЖДЕНИЕ ПЛОЩАДИ СЕЧЕНИЯ.

Цель урока: познакомить со способами нахождения площади сечения многогранника.

Этапы урока:

  1. Актуализация опорных знаний.
  2. Вспомнить теорему о площади ортогональной проекции многоугольника.

  3. Решение задач на нахождение площади сечения:

Без использования теоремы о площади ортогональной проекции многоугольника;

С использованием теоремы о площади ортогональной проекции многоугольника.

3. Подведение итогов урока.

Ход урока.

  1. Актуализация опорных знаний.
  2. Вспомним теорему о площади ортогональной проекции многоугольника: площадь ортогональной проекции многоугольника на плоскость равна произведению его площади на косинус угла между плоскостью многоугольника и плоскостью проекции.

  3. Решение задач.

ABCD – правильная треугольная пирамида со стороной основания AB равной а и высотой DH равной h . Постройте сечение пирамиды плоскостью, проходящей через точки D, C и М, где М – середина стороны АВ, и найдите его площадь (рис.7).

Сечением пирамиды является треугольник MCD. Найдем его площадь.

S = 1/2 · DH · CM = 1/2 · =

Найти площадь сечения куба ABCDA 1 B 1 C 1 D 1 с ребром а плоскостью, проходящей через вершину D и точки Е и F на ребрах А 1 D 1 и C 1 D 1 соответственно, если A 1 E = k · D 1 E и C 1 F = k · D 1 F.

Построение сечения:

  1. Поскольку точки Е и F принадлежат плоскости сечения и плоскости грани A 1 B 1 C 1 D 1 , а две плоскости пересекаются по прямой, то прямая EF будет являться следом секущей плоскости на плоскость грани A 1 B 1 C 1 D 1 (рис.8).
  2. Аналогично получаются прямые ED и FD.
  3. EDF – искомое сечение.

Задача 3 (для самостоятельного решения).

Построить сечение куба ABCDA 1 B 1 C 1 D 1 со стороной а плоскостью, проходящей через точки B, M и N, где Ь – середина ребра АА 1 , а N – середина ребра СС 1 .

Сечение строим методом следов.

Площадь сечения находим с помощью теоремы о площади ортогональной проекции многоугольника. Ответ: S = 1/2 · a 2 .

Вся история геометрии и некоторых других разделов математики тесно связана с развитием теории геометрических построений. Важнейшие аксиомы геометрии, сформированные Евклидом около 300 года до нашей эры, ясно показывают, какую роль сыграли геометрические построения в формировании геометрии.

Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести "Многогранники и построение их сечений”. Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. И тогда урок геометрии становится своеобразным исследованием неожиданных сторон привычного школьного предмета.

На уроках геометрии в этом году мы прошли тему “Построение сечений многогранников”. В рамках программы мы изучили один метод построения сечений, но мне стало интересно, а какие методы ещё существуют.

Цель моей работы : Изучить все методы построения сечений многогранников.

Ни одни геометрические тела не обладают таким совершенством и красотой, как многогранники. "Многогранников вызывающе мало, - написал когда-то Л. Кэролл, - но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук".

В настоящее время теория геометрических построений представляет обширную и глубоко развитую область математики, связанную с решением разнообразных принципиальных вопросов, уходящих в другие ветви математики.

  1. История начертательной геометрии

Еще в глубокой древности человек чертил и рисовал на скалах, камнях, стенах и предметах домашнего обихода изображения вещей, деревьев, животных и людей. Он делал это для удовлетворения своих потребностей, в том числе эстетических. При этом основное требование к таким изображениям заключалось в том, чтобы изображение вызывало правильное зрительное представление о форме изображаемого предмета.

С ростом практических и технических применений изображений (в строительстве зданий и других гражданских и военных сооружений и т. п.) к ним стали предъявлять и такие требования, чтобы по изображению можно было судить о геометрических свойствах, размерах и взаиморасположении отдельных элементов определенного предмета. О таких требованиях можно судить по многим памятникам древности, уцелевшим до наших дней. Однако строгие геометрические обоснованные правила и методы изображения пространственных фигур (с соблюдением перспективы) стали систематически разрабатывать художники, архитекторы и скульпторы лишь в эпоху Возрождения: Леонардо да Винчи, Дюрер, Рафаэль, Микеланджело, Тициан и др.

Начертательная геометрия как наука была создана в конце XVIII века великим французским геометром и инженером Гаспаром Монжем (1746 – 1818). В 1637 г. французский геометр и философ Рене Декарт (1596 – 1650) создал метод координат и заложил основы аналитической геометрии, а его соотечественник, инженер и математик Жирар Дезаг (1593 – 1662), использовал этот метод координат для построения перспективных проекций и обосновал теорию аксонометрических проекций.

В XVII веке в России успешно развивались технические чертежи, выполненные в виде планов и профилей в масштабе. Здесь в первую очередь следует назвать чертежи выдающегося русского механика и изобретателя И.П. Кулибина (1735 – 1818). В его проекте деревянного арочного моста впервые были использованы ортогональные проекции (1773). (Ортогональное проектирование плоскости на лежащую в ней прямую или пространства на плоскость – это частный случай параллельного проектирования, в котором направление проекции перпендикулярно прямой или плоскости, на которую проектируют.)

Большой вклад в развитие ортогональных проекций внес французский инженер А. Фрезье (1682 –1773), который впервые рассмотрел проецирование объекта на две плоскости – горизонтальную и фронтальную.

Величайшей заслугой Г. Монжа явилось обобщение всех научных трудов его предшественников, всей теории о методах изображения пространственных фигур и создание единой математической науки об ортогональном проецировании – начертательной геометрии.

Рождение этой новой науки почти совпало с основанием в Петербурге первого в России высшего транспортного учебного заведения – Института Корпуса инженеров путей сообщения (2 декабря 1809 г.)

Выпускники этого института, его профессора и ученые внесли существенный вклад в развитие геометрических методов изображения, в теорию и практику начертательной геометрии.

  1. Определения многогранников

В стереометрии изучаются фигуры в пространстве, называемые телами . Наглядно (геометрическое) тело надо представлять себе как часть пространства, занятую физическим телом и ограниченную поверхностью.

Многогранник - это такое тело, поверхность которого состоит из нескольких плоских многоугольников. Многогранник называется выпуклым , если он расположен по одну сторону плоскости каждого плоского многоугольника на его поверхности. Общая часть такой плоскости и поверхности выпуклого многогранника называется гранью . Грани выпуклого многогранника являются плоскими выпуклыми многоугольниками. Стороны граней называются ребрами многогранника , а вершины - вершинами многогранника.

Сечением многогранника плоскостью называется геометрическая фигура, представляющая собой множество всех точек пространства, принадлежащих одновременно данным многограннику и плоскости; плоскость при этом называется секущей плоскостью.

Поверхность многогранника состоит из ребер, отрезков и граней плоских многоугольников. Так как прямая и плоскость пересекаются в точке, а две плоскости - по прямой, то сечением многогранника плоскостью является плоский многоугольник ; вершинами этого многоугольника служат точки пересечения секущей плоскости с ребрами многогранника, а сторонами - отрезки, по которым секущая плоскость пересекает его грани. Это означает, что для построения искомого сечения данного многогранника плоскостью α достаточно построить точки ее пересечения с ребрами многогранника. Затем последовательно соединить отрезками эти точки, при этом выделить сплошными линиями, видимые и штриховыми невидимые стороны полученного многоугольника сечения.

III. Методы построения сечений многогранников

Метод сечений многогранников в стереометрии используется в задачах на построение. В его основе лежит умение строить сечение многогранника и определять вид сечения.

Данный материал характеризуется следующим особенностями:

  • Метод сечений применяется только для многогранников, так как различные сложные (наклонные) виды сечений тел вращения не входят в программу средней школы.
  • В задачах используются в основном простейшие многогранники.
  • Задачи представлены в основном без числовых данных, чтобы создать возможность их многовариантного использования.

Чтобы решить задачу построения сечения многогранника ученик должен знать:

  • Что значит построить сечение многогранника плоскостью;
  • Как могут располагаться относительно друг друга многогранник и плоскость;
  • Как задается плоскость;
  • Когда задача на построение сечения многогранника плоскостью считается решенной.

Поскольку плоскость определяется:

  • Тремя точками;
  • Прямой и точкой;
  • Двумя параллельными прямыми;
  • Двумя пересекающимися прямыми,

Построение плоскости сечения проходит в зависимости от задания этой плоскости. Поэтому все способы построения сечений многогранников можно разделить на методы.

3.1 Построение сечений многогранников на основе системы аксиом стереометрии

Задача 1 . Постройте сечение пирамиды РАВС плоскостью α = (МКH), где М, К и Н- внутренние точки соответственно ребер РС, РВ и АВ (рис. 1, а).

Решение .

1-й шаг . Точки М и K лежат в каждой из двух плоскостей α и РВС. Поэтому по аксиоме пересечения двух плоскостей плоскость α пересекает плоскость РВС по прямой МК. Следовательно, отрезок МК - одна из сторон искомого сечения (рис. 1, б).

2-й шаг . Аналогично, отрезок КН - другая сторона искомого сечения (рис. 1, в).

3-й шаг . Точки М и Н не лежат одновременно ни в одной из граней пирамиды РАВС, поэтому отрезок МН не является стороной сечения этой пирамиды. Прямые КН и РА лежат в плоскости грани АВР и пересекаются. Построим точку T= КН ∩АР (рис. 1, г).

Поскольку прямая КН лежит в плоскости α, то и точка T лежит в плоскости α. Теперь мы видим, что плоскости α и АРС имеют общие точки М и T. Следовательно, по аксиоме пересечения двух плоскостей плоскость α и плоскость АРС пересекаются по прямой МТ, которая, в свою очередь, пересекает ребро АС в точке R (рис. 1, д).

4-й шаг . Теперь так же, как в шаге 1, устанавливаем, что плоскость α пересекает грани АСР и АВС по отрезкам MR и HR соответственно. Следовательно, искомое сечение - четырехугольник MKHR (рис. 1, е).

Рис. 2

Задача 2. Постройте сечение пирамиды MABCD плоскостью α = (КНР), где K, H и P - внутренние точки ребер соответственно МА, МВ и MD (рис. 2, а).

Решение. Первые два шага аналогичны шагам 1 и 2 предыдущей задачи. В результате получим стороны КР и КН (рис. 2, б) искомого сечения. Построим остальные вершины и стороны многоугольника - сечения.

3-й шаг . Продолжим отрезок КР до пересечения с прямой AD в точке F (рис. 2, в). Так как прямая КР лежит в секущей плоскости α, то точка F= КР ∩ AD = КР ∩ (АВС) является общей для плоскостей α и АВС.

4-й шаг . Продолжим отрезок КН до пересечения с прямой АВ в точке L (рис. 2, г). Так как прямая КН лежит в секущей плоскости α, то точка L = КН ∩ АВ = КН ∩ (АВС) является общей для плоскостей α и АВС.

Таким образом , точки F и L являются общими для плоскостей α и АВС. Это означает, что плоскость α пересекает плоскость АВС основания пирамиды по прямой FL.

5-й шаг . Проведем прямую FL. Эта прямая пересекает ребра ВС и DС соответственно в точках R и T (рис. 2, д), которые служат вершинами искомого сечения. Значит, плоскость α пересекает грань основания ABCD по отрезку RT - стороне искомого сечения.

6-й шаг . Теперь проводим отрезки RH и РТ (рис. 2, е), по которым плоскость α пересекает грани ВМС и MCD данной пирамиды. Получаем пятиугольник РКНRТ - искомое сечение пирамиды MABCD (рис. 2, е).

Рассмотрим более сложную задачу.

Задача 3 . Постройте сечение пятиугольной пирамиды PABCDE плоскостью α = (KQR), где K, Q - внутренние точки ребер соответственно РА и РС, а точка R лежит внутри грани DPE (рис. 3, а).

Решение . Прямые (QK и АС лежат в одной плоскости АСР (по аксиоме прямой и плоскости) и пересекаются в некоторой точке T1, (рис. 3 б), при этом T1 є α, так как QК є α.

Прямая РR пересекает DE в некоторой точке F (рис. 3, в), которая является точкой пересечения плоскости АРR и стороны DE основания пирамиды. Тогда прямые КR и АF лежат в одной плоскости АРR и пересекаются в некоторой точке Т2 (рис. 3, г), при этом Т2 є α, как точка прямой KR є α (по аксиоме прямой и плоскости).

Получили: прямая Т1 Т2 лежит в секущей плоскости α и в плоскости основания пирамиды (по аксиоме прямой и плоскости), при этом прямая пересекает стороны DE и АЕ основания ABCDE пирамиды соответственно в точках М и N (рис. 3, д), которые являются точками пересечения плоскости α с ребрами DE и АЕ пирамиды и служат вершинами искомого сечения.

Далее , прямая MR лежит в плоскости грани DPE и в секущей плоскости α (по аксиоме прямой и плоскости), пересекая при этом ребро PD в некоторой точке Н - еще одной вершине искомого сечения (рис. 3, е).

Далее, построим точку Т3 - Т1Т2 ∩ АВ (рис. 3, ж), которая, как точка прямой Т1Т2 є α, лежит в плоскости а (по аксиоме прямой и плоскости). Теперь плоскости грани РАВ принадлежат две точки Т3 и К секущей плоскости α, значит, прямая Т3К - прямая пересечения этих плоскостей. Прямая Т3К пересекает ребро РВ в точке L (рис. 3, з), которая служит очередной вершиной искомого сечения.

Рис. 3

Таким образом, «цепочка» последовательности построения искомого сечения такова:

1 . Т1 = QK ∩АС;

2 . F = PR ∩ DE;

3. Т2 = KR ∩ AF;

4 . М = Т1Т2 ∩ DE;

5 . N = Т1Т2 ∩ АЕ;

6 . Н = MR ∩ PD;

7. T3 = Т1Т2 ∩ АВ;

8 . L = T3K ∩ PB.

Шестиугольник MNKLQH - искомое сечение.

Сечение пирамиды на рис. 1 и сечение куба на рис. 2 построены на основании лишь аксиом стереометрии.

Вместе с тем сечение многогранника, имеющего параллельные грани (призма, параллелепипед, куб), можно строить, используя свойства параллельных плоскостей.

3.2 Метод следов в построении плоских сечений многогранников

Прямая, по которой секущая плоскость α пересекает плоскость основания многогранника, называется следом плоскости α в плоскости этого основания.

Из определения следа получаем: в каждой его точке пересекаются прямые, одна из которых лежит в секущей плоскости, другая - в плоскости основания. Именно это свойство следа используют при построении плоских сечений многогранников методом следов. Причем в секущей плоскости, удобно использовать такие прямые, которые пересекают ребра многогранника.

Сначала секущую плоскость зададим ее следом в плоскости основания призмы (пирамиды) и точкой, принадлежащей поверхности призмы (пирамиды).

Задача 1 . Построить сечение призмы АВСВЕА1В1С1D1Е1 плоскостью α, которая задана следом l в плоскости АВС основания призмы и точкой М, принадлежащей ребру DD1.

Решение. Анализ . Предположим, что пятиугольник MNPQR - искомое сечение (рис. 4). Для построения этого плоского пятиугольника достаточно построить его вершины N, P, Q, R (точка М дана) - точки пересечения секущей плоскости α с ребрами соответственно СС1, ВB1, АА1, ЕЕ1 данной призмы.

Е1 D1

Для построения точки N =α ∩ СС1 достаточно построить прямую пересечения секущей плоскости α с плоскостью грани СDD1C1. Для этого, в свою очередь, достаточно построить в плоскости этой грани еще одну точку, принадлежащую секущей плоскости α. Как построить такую точку?

Так как прямая l лежит в плоскости основания призмы, то она может пересекать плоскость грани СDD1C1 лишь в точке, которая принадлежит прямой CD = (CDD1) ∩ (АВС), т.е. точка X = l ∩ СD = l ∩ (CDD1) принадлежит секущей плоскости α. Таким образом, для построения точки N = α ∩ СС1 достаточно построить точку X = l ∩ СD.

Аналогично, для построения точек Р= α ∩ ВВ1, Q = α ∩ АА1 и R = α ∩ ЕЕ1 достаточно построить соответственно точки: У = l ∩ ВС, Z = 1 ∩ АВ и Т =1 ∩ АЕ.

Построение . Строим (рис. 5):

1. X = l ∩ СD (рис. 5, б);

2. N = МХ ∩ СС1 (рис. 5, в);

3. У = l ∩ ВС (рис. 5, г);

4. Р = NY ∩ ВВ1 (рис. 5, д);

5. Z = 1 ∩ АВ (рис. 5, е);

6. Q= РZ ∩ АА1 (рис. 5, ж);

7. T= l ∩ АЕ (рис. 5, з);

8. R= QT ∩ ЕЕ1 (рис. 5, и).

Пятиугольник MNPQR - искомое сечение (рис. 5, к).

Доказательство. Так как прямая l - след секущей плоскости α, то точки X = l ∩ СD, Y = l ∩ ВС, Z = 1 ∩ АВ и T= l ∩ АЕ принадлежат этой плоскости.

Поэтому имеем :

М Є α, X Є α => МХ є α, тогда МХ ∩ СС1 = N є α , значит, N = α ∩ СС1;

N Є α, Y Є α => NY Є α, тогда NY ∩ ВВ1= Р Є α, значит, Р = α ∩ ВВ1;

Р Є α, Z Є α => РZ Є α, тогда PZ ∩ AА1 = Q Є α, значит, Q = α ∩ АA1;

Q Є α, T Є α => QТ Є α, тогда QТ ∩ EЕ1 =R Є α, значит, R = α ∩ ЕЕ1.

Следовательно, MNPQR - искомое сечение.

Исследование. След l секущей плоскости α не пересекает основание призмы, а точка М секущей плоскости принадлежит боковому ребру DD1 призмы. Поэтому секущая плоскость α не параллельна боковым ребрам. Следовательно, точки N, Р, Q и R пересечения этой плоскости с боковыми ребрами призмы (или продолжениями этих ребер) всегда существуют. А поскольку, кроме того, точка М не принадлежит следу l, то определяемая ими плоскость α единственна. Это означает, что задача имеет (всегда) единственное решение.

3.3 Метод внутреннего проектирования в построении плоских сечений многогранников

В некоторых учебных пособиях метод построения сечений много-гранников, ко¬торый мы сейчас будем рассматривать, называют методом внутреннего проекти¬рования или методом соответствий, или методом диа-гональных сечений.

Задача 1 . Постройте сечение пирамиды PABCDE плоскостью α = (МFR), если точки М, F и R являются внутренними точками ребер соответ-ственно РА, РС и РЕ. (Рис. 6)

Решение . Плоскость основания пирамиды обозначим β. Для построе-ния искомого сечения построим точки пересечения секущей плоскости α с ребрами пирамиды.

Построим точку пересечения секущей плоскости с ребром РD данной пирамиды.

Плоскости APD и CPE пересекают плоскость β по прямым соответ-ственно АD и СЕ, которые пересекаются в некоторой точке К. Прямая РК=(АРD) ∩(СРЕ) пересекает прямую FR є α в некоторой точке К1: К1 = РК ∩ FR, при этом К1 є α. Тогда: М є α, К1 є α => прямая МK є а. Поэтому точка Q = МК1 ∩ РD есть точка пересечения ребра РD и секущей плоскости: Q =α ∩ PD. Точка Q- вершина искомого сечения. Аналогично строим точку пересечения плоскости α и ребра РВ. Плоскости ВРЕ и АРD пересекают плоскость β по прямым соответственно ВЕ и АD, которые пересекаются в точке Н. Прямая РН = (ВРЕ) ∩ (АРD) пересекает прямую МQ в точке Н1.Тогда прямая RН1 пересекает ребро РВ в точке N = α ∩ РВ - вершине сечения.

Таким образом , последовательность шагов построения искомого сечения такова:

1 . К = АD ∩ ЕС; 2 . К1 = РК ∩ RF;

3 . Q = МК1 ∩ РD; 4. H = BE ∩ АD;

5 . Н1 = РН ∩ МQ; 6 . N = RН1 ∩ РВ.

Пятиугольник MNFQR - искомое сечение.

3.4 Комбинированный метод в построении плоских сечений многогранников

Сущность комбинированного метода по¬строения сечений многогранников состоит в следующем. На некоторых этапах по¬строения сечения применяется или метод следов, или метод внутреннего проектирования, а на других этапах построения этого же сечения используются изученные теоремы о параллельности, перпендикулярности прямых и плоскостей.

Для иллюстрации применения этого метода рассмотрим следующую задачу.

Задача1 .

Постройте сечение параллелепипеда АВСDА1В1С1D1 плоскостью α, заданной точками Р, Q и R, если точка Р лежит на диагонали А1C1, точка Q на ребре ВВ1 и точка R на ребре DD1. (Рис. 7)

Решение

Решим эту задачу с применением метода следов и теорем о параллельности прямых и плоскостей.

Прежде всего, построим след секущей плоскости α = (РQR) на плоско-сти АВС Для этого строим точки Т1 = РQ ∩ Р1В (где PP1 ║AA1,P1є AC) и T2 = RQ ∩ ВD. Построив след Т1Т2, замечаем, что точка Р лежит в плоскости А1B1C1, которая параллельна плоскости АВС. Это означает, что плоскость α пересекает плоскость А1B1C1 по прямой, проходящей через точку Р и парал-лельной прямой Т1Т2. Проведем эту прямую и обозначим через М и Е точки ее пересечения с ребрами соответственно А1B1 и А1D1 Получаем: М = α ∩ А1B1, Е =α∩ А1D1. Тогда отрезки ЕR и QМ являются сторонами искомого сечения.

Далее, так как плоскость ВСС1 параллельна плоскости грани ADD1A1, то плоскость α пересекает грань ВСC1B1 по от резку QF (F= α ∩ СС1), параллельному прямой ЕR. Таким образом, пятиугольник ERFQM - искомое сечение. (Точку F можно получить, проведя RF║ MQ)

Решим эту задачу, применяя метод внутреннего проектирования и теоремы о параллельности прямых и плоскостей. (Рис. 8)

Рис. 8

Пусть Н=АС ∩ ВD. Проведя прямую НН1 параллельно ребру ВВ1 (Н1 є RQ), построим точку F: F=РН1 ∩ CC1.Tочка F является точкой пересечения плоскости α с ребром СС1, так как РН1 є α. Тогда отрезки RF и QF, по которым плоскость α пересекает соответственно грани CС1D1D и ВСС1В1 данного параллелепипеда, являются сторонами его искомого сечения.

Так как плоскость АВВ1 параллельна плоскости CDD1, то пересечением плоскости α и грани АВВ1А1 является отрезок QМ (М Є А1В1), параллельный отрезку FR; отрезок QМ - сторона сечения. Далее точка Е = МР ∩ А1D1 является точкой пересечения плоскости α и ребра А1D1, так как МР є α. Поэтому точка Е - еще одна вершина искомого сечения. Таким образом, пятиугольник ERFQM - искомое сечение. (Точку Е можно построить, проведя прямую RЕ ║ FQ. Тогда М = РЕ ∩ А1B1).

IV. Заключение

Благодаря этой работе я обобщила и систематизировала знания, полученные за курс геометрии этого года, ознакомилась с правилами выполнения творческой работы, получила новые знания и применила их на практике.

Мне бы хотелось чаще использовать свои новые полученные знания на практике.

К сожалению, я рассмотрела не все методы построения сечений многогранников. Существует ещё множество частных случаев:

  • построение сечения многогранника плоскостью, проходящей через заданную точку параллельно заданной плоскости;
  • построение сечения, проходящего через заданную прямую параллельно другой заданной прямой;
  • построение сечения, проходящего через заданную точку параллельно двум заданным скрещивающимся прямым;
  • построение сечения многогранника плоскостью, проходящей через заданную прямую перпендикулярно заданной плоскости;
  • построение сечения многогранника плоскостью, проходящей через заданную точку перпендикулярно заданной прямой и др.

В будущем я планирую расширить своё исследование и дополнить свою работу разбором выше перечисленных частных случаев.

Я считаю, что моя работа актуальна, так как она может быть использована учащимися средних и старших классов для самостоятельной подготовки к ЕГЭ по математике, для углубленного изучения материала на факультативах и для самообразования молодых учителей. Выпускники средних школ должны не только овладеть материалом школьных программ, но и уметь творчески применять его, находить решение любой проблемы.

V. Литература

  1. Потоскуев Е.В., Звавич Л.И. Геометрия. 10 кл.: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики. - М.: Дрофа, 2008.
  2. Потоскуев Е.В., Звавич Л.И. Геометрия. 10 кл.: Задачник для общеобразовательных учреждений с углубленным и профильным изучением математики. - М.: Дрофа, 2008.
  3. Потоскуев Е.В. Изображение пространственных фигур на плоскости. Построение сечений многогранников. Учебное пособие для студентов физико-математического факультета педвуза. - Тольятти: ТГУ, 2004.
  4. Научно-практический журнал для старшеклассников «Математика для школьников»,2009,№2/№3,1-64.
  5. Геометрия в таблицах - Учебное пособие для учащихся старших классов - Нелин Е.П.
  6. Геометрия, 7-11 класс, Справочные материалы, Безрукова Г.К., Литвиненко В.Н., 2008.
  7. Математика, Справочное пособие, Для школьников старших классов и поступающих в ВУЗы, Рывкин А.А., Рывкин А.З., 2003.
  8. Алгебра и геометрия в таблицах и схемах, Роганин А.Н., Дергачёв В.А., 2006.