Выбросы CO2 в мире поставили абсолютный исторический рекорд. Почему выбросы CO2 — возможно, не самая большая проблема с климатом Вулканы выброс углекислого газа

Вызвала в комментариях ожесточенный спор на тему, является ли человеческая цивилизация основным источником парниковых газов на планете. Уважаемый dims12 привел интересную ссылку , где говорится, что вулканы выбрасывают в 100-500 раз меньше углекислого газа, чем современная цивилизация:

В ответ на это, уважаемый vladimir000 привел свой . В результате него он получил, что выбросы СО2 человеческой цивилизацией гораздо меньше: около 600 миллионов тонн:

Что-то у вас порядок цифр странный. Поиск дает суммарную мощность всех электростанций Земли 2*10^12 ватт, то есть, предположив, что все они работают на ископаемом топливе круглый год, получаем примерно 2*10^16 ватт-час годового потребления, то есть 6*10^15 КДжоулей.

Опять же, поиск дает удельную теплоту сгорания первые десятки тысяч КДжоулей на килограмм ископаемого топлива. Примем для простоты 10000, и примем, что все переработанное топливо улетает в трубу без остатка.

Тогда, чтобы полностью покрыть потребности человечества в энергии, получается, достаточно сжигать 6*10^15 / 10^4 килограмм углерода в год, то есть 6*10^8 тонн. 600 мегатонн в год. Учитывая, что существуют еще атомные, гидро и прочие возобновляемые станции, не вижу за счет чего, итоговое потребление увеличится в 500 раз.

Разница получилась огромная - 500 раз. Но при этом я не совсем понял, откуда получилась эта 500-кратная разница. Если разделить 29 миллиардов тонн на 600 миллионов тонн, то будет разница в 50 раз. С другой стороны, эта разница, вероятно, связана с не 100% КПД электростанцией, и с тем фактом, что ископаемое топливо потребляют не только электростанции, но и для транспорта, обогрева жилищ или производства цемента.

Поэтому можно точнее произвести этот расчет. Для этого просто используем следующую цитату : "при сжигании угля в размере одной тонны условного топлива потребляется 2,3 тонны кислорода и выбрасывается 2,76 тонны углекислого газа, а при сжигании природного газа выбрасывается 1,62 тонны углекислого газа, а потребляется все те же 2,35 тонны кислорода ".

Сколько сейчас человечество потребляет условного топлива в год? Такая статистика приводится в отчетах компании BP . Около 13 миллиардов тонн условного топлива. Тем самым человечество выбрасывает в атмосферу порядка 26 миллиардов тонн углекислого газа. Более того, в тех же данных приводится подробная статистика по выбросам СО2 за каждый год. Из неё следует, что эти выбросы постоянно растут:

В тоже время, только половина этих выбросов попадает в атмосферу. Другая половина

Двуокись углерода (CO2) – это бесцветный газ, который присутствует в воздухе. Хотя выбросы происходят из многих природных источников, проблематичным является CO2, производимый в результате технологических процессов. Например, сжигание ископаемого топлива и выбросы электростанций вредят окружающей среде нашей планеты и существенно влияют на изменение климата. Поэтому очень важно стремиться максимально уменьшить выбросы этого газа.

Сократить объемы автомобильных выхлопов

Одним из крупнейших производителей CO2, насыщающих нашу атмосферу, являются автомобили, на которых многие из нас ездят каждый день. Это – второй по величине источник углекислого газа, на который приходится 31 процент общего объема выбросов. Однако эта проблема связана не только с личными транспортными средствами. Все, что работает на бензиновом или дизельном двигателе, выбрасывает в атмосферу двуокись углерода.

Лучший способ решить эту проблему – снизить объемы CO2, производимые вашим автомобилем. Вы можете воспользоваться одной машиной с коллегами или друзьями или общественным транспортом. Таким образом число автомобилей, ездящих по улицам, сократится

Уменьшить потребление энергии

При производстве электроэнергии вырабатывается в целом больше углекислого газа, чем от авто. Многие из наших электростанций сжигают ископаемое топливо для выработки энергии, которую мы используем. Очевидно, чем больше электричества мы потребляем, тем больше энергии нужно производить.

Делайте акцент на покупку энергосберегающих приборов и всегда ищите новые способы сбережения энергии.

Сократить количество отходов

Промышленность задействует огромные объемы энергии для производства всего, что мы используем в нашей повседневной жизни. Из этого следует, что, если мы сможем переработать наши отходы, потребуется меньше энергии для производства новых материалов. Обязательно всегда сдавайте в переработку все, что можете, от бумаги и пластика до батарей.

Восстановить природные ресурсы

Океаны играют жизненно важную роль в поглощении углекислого газа, присутствующего в атмосфере. Поскольку поглощение диоксида углерода океаном является медленным процессом и может занимать сотни лет, это явление не может обезвредить то огромное количество газа, которое выбрасывается каждый день.

Тем не менее, растения и деревья также используют углекислый газ во время фотосинтеза для производства кислорода. Мы не можем увеличить площадь океанов на планете, однако в наших силах стремиться к восстановлению и сохранению лесов для большей переработки вредного газа.

Другие решения

Есть и другие вещи, которые можно сделать, чтобы помочь улучшить ситуацию с углекислым газом, даже если они непосильны одному обычному человеку. Например, как общество, мы должны продолжать стремиться к совершенствованию технологий на наших электростанциях, чтобы потребление энергии не приводило к таким большим выбросам углекислого газа.

Казалось бы, вклад одного человека не столь существенен, но если каждый из нас сделает все возможное, это в конечном итоге приведет к значительному улучшению окружающей среды.

Закончился 2018 год и по данным Национального управления океанических и атмосферных исследований в начале 2019 года средний уровень углекислого газа в атмосфере земли находится на уровне 409 ppm.

На графике показана среднесуточная концентрация CO 2 в четырех базовых обсерваториях Отдела глобального мониторинга; Барроу, Аляска (синим цветом ), Мауна-Лоа, Гавайи (красным цветом ), Американское Самоа (зеленым цветом ) и Южный полюс Антарктиды (желтым цветом ). Толстая черная линия представляет среднее значение сглаженных, не сезонных кривых для каждой записи. Эта линия тренда является очень хорошей оценкой глобальных средних уровней CO 2 . Тренд графика является восходящим, а это значит, что в 2019 году мы увидим новую вершину значений концентрации диоксида углерода на планете.

Итоги 2018 по диоксиду углерода

Сайт Global Carbon Budget (Глобальный углеродный бюджет) сделал инфографики оборота CO 2 в атмосфере земли на конец 2018 года.

Согласно предоставленной информации глобальные выбросы CO 2 в 2018 году составили порядка 37,1 Гигатонн диоксида углерода. Это приблизительно на 2,7% больше чем в прошлом году. Есть небольшая вариативность значений от 1,8% до 3,7%, связанна она со сложными подсчетами глобального оборота углекислоты в атмосфере земли.

Какие страны выбрасывают больше всего CO 2 ?

Стоит заметить существенную тенденцию к увеличению выбросов, начиная с 1960 года. Более детально были рассмотрены . Мы же с вами рассмотрим список основных стран — поставщиков этого газа в воздух нашей планеты.

В 1960 году, как и следовало ожидать, лидирующие позиции занимали США, Россия и Германия. Здесь есть небольшой нюанс – указана только Россия без стран, которые входили в состав СНГ, например Украина и Казахстан. Далее на 4 месте шел Китай, потом страны Европы, Востока и т.д. Количество выбросов в 1960 год составило порядка 9411 Мегатонн (9,4 Гт)

В 2017 году ситуация кардинально поменялась, в лидеры вырвался Китай со своей промышленностью.

Китай – это дешевая рабочая сила. Многие корпорации осуществили перевод своих производственных мощностей в эту страну, дополнительно решив проблему налогов на выбросы. Да и сам Китай за последнее время очень сильно поднялся в плане производства и торговли с другими странами.

2 и 3 места занимают США и Индия соответственно. Последняя страна догнала почти Китай по количеству населения, также дешевая рабочая сила привлекает туда инвесторов со своим производством. 4 место занимает Россия, после нее Япония, затем Германия и т.д. Количество выбросов возросло до 36153 Мегатонн (36,1 Гт).

Куда девается CO 2 , когда попадает в атмосферу?

Ответ сам по себе очевиден читателю этого сайта, он остается в атмосфере земли и накапливается в ней,

Выбросы от сжигания угля, газа и нефти составляют приблизительно 34 Гт CO 2 в год. Прибавляем сюда лесные пожары, вырубку лесов и создание пастбищ, получаем еще 5 Гт CO 2 . Очень странно смотреть теперь на вулканические выбросы, которые составляют всего лишь 500 Мт (0,5Гт) диоксида углерода, в расчетах мы их не учитываем из-за непостоянства. За годовой период растения на суше поглощают 12 Гт, океан же немного меньше – 9 Гт. Еще 700 Мегатонн уходит на углеродные циклы над водой и сушей, в итоге получаем прибавку в углекислом газе на +17,3 Гт в год. Тенденция идет к увеличению, никто не собирается заключать договоры на ограничение выбросов газа.

Заключение

В заключение предлагаю посмотреть на видео, как менялось значение диоксида углерода в течение 800.000 лет, сначала авторы из NOAA сделали записи по приборам. При обратной обмотке графика для определения содержания углекислоты в воздухе использовались данные, полученные из кернов-образцов льда, взятых в Антарктике.

Основным загрязнителем атмосферы является СО 2 , образующийся в результате сжигания органического топлива при выработке электроэнергии и тепла. Для комплексной оценки общей нагрузки на окружающую среду от строительства объектов жилищно-гражданского назначения необходимо оценить уровень вредного воздействия эмиссии углекислого газа (СО 2) в атмосферу на отдельных этапах жизненного цикла здания, а именно: производство строительных материалов, возведение объекта, эксплуатация, реконструкция и снос. В связи с обширностью данного вопроса, оценим уровень неблагоприятного воздействии на стадии эксплуатации, как наиболее продолжительного периода жизненного цикла, объектов строительства г. Красноярска.

Расчеты выбросов углекислого газа (СО 2) лучше всего поддаются контролю, поскольку они базируются на уравнении окисления углерода:

С + О 2 = СО 2

или в молярных массах: 12 + 2 * 16 = 12 + 16 * 2 = 44

Следовательно, на 12 молярных масс углерода приходится 44 массы двуокиси углерода. Соответственно, на одну молярную массу углерода приходится массы двуокиси углерода, т.е. на каждую сожженную тонну углерода выбрасывается или примерно 3,67 т двуокиси углерода.

Формулой для расчета выбросов СО 2 , образующегося при сжигании органического топлива за определенный период времени является формула (1):

– объем годового выброса СО 2 , т.;

– масса сожженного топлива, т.;

– низшая теплотворная способность данного вида топлива, ГДж.;

– коэффициент выбросов углерода для данного вида топлива т С/Гдж.;

– коэффициент фракции окисленного углерода для данного вида топлива;

– коэффициент преобразования углерода в диоксид углерода, равный 44/12, или 3,67.

При анализе вредного воздействия на этапе эксплуатации в расчетах используются различные виды топлива. В таблице 1 представлены, подготовленные Межправительственной группой экспертов по изменению климата (МГЭИК), коэффициенты выбросов углерода, выделяемого при сжигании различных видов топлив , коэффициенты низшей теплотворной способности и удельной теплоты сгорания отдельных видов топлив.

Таблица 1.

Расчетные коэффициенты

Виды топлива

Коэффициент выбросов С, т С/ГДж

Фракция окисленного С

Коэффициенты низшей теплотворной способности, ГДж/ед

Удельная теплота сгорания, КДж/кг

Уголь каменный

Уголь бурый

Брикеты угольные

Природный газ

Дизельное топливо

Подставив данные в формулу (1) получаем результаты по объемам выбросов двуокиси углерода при сжигании 1 т топлива (табл. 2).

Таблица 2.

Количество выбросов СО 2 в атмосферу при сжигании топлива

Виды топлива

Объем топлива

Объем выброса СО 2 , т

Уголь каменный

Уголь бурый

Брикеты угольные

Природный газ

Дизельное топливо

Объем топлива, требуемого для отопления жилого дома определяется по формуле (2):

где – количество выделившейся теплоты (МДж),

q - удельная теплота сгорания, табл. 20 (МДж/кг),

m - масса сгоревшего топлива (кг).

На основании полученных данных можно оценить нагрузку на окружающую среду от эксплуатации данного объекта недвижимости за весь расчетный период по формуле (3):

, (3)

где – общий объем выброса СО 2 , т.;

Q co2 – объем годового выброса СО 2 , т.;

m – масса сгоревшего топлива, т.

В работе проведена оценка нагрузки на окружающую среду от эксплуатации следующих объектов жилищно-гражданского назначения:

  1. Многоэтажный жилой дом №12 в микрорайоне «Белые росы» в районе Абаканской протоки, жилого района «Пашенный», Свердловского района г. Красноярска (далее – Объект №1):
  • 24-этажное здание;
  • конструктивное решение – кирпичное;
  1. Комплекс многоэтажных жилых домов 5-го микрорайона жилого района «Нанжуль-Солнечный» по адресу: г. Красноярск, жилой массив индивидуальной застройки «Нанжуль-Солнечный», уч. №ХХI. Жилой дом №6 (далее – Объект №2):
  • 10-этажное здание;
  • каркасное конструктивное решение;
  • класс энергетической эффективности – В «Высокий».
  1. 1-й квартал V микрорайона жилого массива «Слобода Весны». IV очередь строительства: 5 этап - многоэтажный жилой дом №4.2 со встроенными нежилыми помещениями и инженерным обеспечением (далее – Объект №3):
  • 26-этажное здание;
  • конструктивное решение – монолитно-каркасное;
  • класс энергетической эффективности – В «Высокий».
  1. 1-й квартал V микрорайона жилого массива «Слобода Весны». IV очередь строительства: 4-й этап - многоэтажный жилой дом №4.3 со встроенными нежилыми помещениями и инженерным обеспечением», почтовый адрес - г. Красноярск, ул. 9 Мая, 83 (далее – Объект №4):
  • 26-этажное здание;
  • конструктивное решение - монолитный железобетон с несущими поперечными и продольными стенами;
  • класс энергетической эффективности – В «Высокий».

За расчетный период примем минимальный срок эксплуатации объектов жилищно-гражданского назначения – 50 лет.

Исходные данные принимаем согласно фактическим данным энергетического паспорта каждого объекта. Информация по потребности в тепловой энергии приведена в сводной таблице 3.

Таблица 3.

Расчетные характеристики энергетических паспортов

Обозначение и ед. изм. параметра

Объект №1

Объект №2

Объект №3

Объект №4

Расход тепловой энергии за отопительный период

Отапливаемая площадь

A h , м 2

Расход тепловой энергии за отопительный период на 1 м 2

q h y ,

На основании исходных данных по формуле (2) определим кол-во необходимого топлива на отопление помещений рассматриваемых объектов жилищно-гражданского назначения в течение расчетного периода - 50 лет (табл. 4).

Таблица 4.

Потребность в топливе для отопления объектов

Наименование расчетных параметров

Объект №1

Объект №2

Объект №3

Объект №4

Уголь каменный

Уголь бурый

Брикеты угольные

Природный газ

Дизельное топливо

На основании данных таблиц 2, 4 определим нагрузку на окружающую среду от эксплуатации объектов жилищно-гражданского назначения за весь расчетный период по формуле (3).

Т.к. рассматриваемые объекты недвижимости имеют различную площадь, для проведения сравнительной характеристики приведем полученные данные по выбросам СО 2 к единообразию, т.е. определим кол-во выделенного СО 2 за расчетный период на 1 м 2 , результаты представлены в таблице 6.

Таблица 6.

Объемы выбросов СО 2 от сжигания топлива на стадии эксплуатации объектов недвижимости за 50 лет на 1 м 2

Наименование расчетных параметров

Объект №1

Объект №2

Объект №3

Объект №4

Уголь каменный

Уголь бурый

Брикеты угольные

Природный газ

Дизельное топливо

Наибольшие теплопотери приходятся на объект №2 (рис.1) (Комплекс многоэтажных жилых домов 5-го микрорайона жилого района «Нанжуль-Солнечный» по адресу: г. Красноярск, жилой массив индивидуальной застройки «Нанжуль-Солнечный», уч. №ХХI. Жилой дом №6), в результате чего требуется больше энергии и топлива для отопления 1м 2 на протяжении периода эксплуатации объекта, и, как следствие, наибольшее количество выбросов двуокиси углерода в атмосферу.

Рисунок 1. Объем выделения СО 2 на стадии эксплуатации объектов недвижимости за 50 лет на 1 м 2

Таким образом, в результате проведенных расчетов наиболее экологически чистым топливом для отопления жилого дома является природный газ. При отоплении природным газом выделяется СО 2 почти в половину меньше от количества выделяемого СО 2 при отоплении бурым углем.

Список литературы:

  1. Белоусов, В. Н. Энергосбережение и выбросы парниковых газов (СО2): уче. пособие/ В. Н. Белоусов, С. Н. Смородин, В. Ю. Лакомкин. – Санкт –Петербург, 2014. – 53 с.
  2. ГОСТ Р 54257-2010. Надежность строительных конструкций и оснований. Основные положения и требования – Введ. 01.09.2011. – Москва: Стандартинформ, 2011. – 14 с.
  3. Жусип, Ж. А. Оценка загрязнения окрестностей города Алматы при сжигании угля [Электронный ресурс] / Ж. А. Жусип, А. В. Омарова // Научное сообщество студентов XXI столетия. – 2013. – № 12..
  4. РНД Методические указания по расчету выбросов парниковых газов от тепловых электростанций и котельных Введ. 2010. – Астана, 2010. – 15 с.

Газировка, вулкан, Венера, рефрижератор – что между ними общего? Углекислый газ. Мы собрали для Вас самую интересную информацию об одном из самых важных химических соединений на Земле.

Что такое диоксид углерода

Диоксид углерода известен в основном в своем газообразном состоянии, т.е. в качестве углекислого газа с простой химической формулой CO2. В таком виде он существует в нормальных условиях – при атмосферном давлении и «обычных» температурах. Но при повышенном давлении, свыше 5 850 кПа (таково, например, давление на морской глубине около 600 м), этот газ превращается в жидкость. А при сильном охлаждении (минус 78,5°С) он кристаллизуется и становится так называемым сухим льдом, который широко используется в торговле для хранения замороженных продуктов в рефрижераторах.

Жидкая углекислота и сухой лед получаются и применяются в человеческой деятельности, но эти формы неустойчивы и легко распадаются.

А вот газообразный диоксид углерода распространен повсюду: он выделяется в процессе дыхания животных и растений и является важной составляющей частью химического состава атмосферы и океана.

Свойства углекислого газа

Углекислый газ CO2 не имеет цвета и запаха. В обычных условиях он не имеет и вкуса. Однако при вдыхании высоких концентраций диоксида углерода можно почувствовать во рту кисловатый привкус, вызванный тем, что углекислый газ растворяется на слизистых и в слюне, образуя слабый раствор угольной кислоты.

Кстати, именно способность диоксида углерода растворяться в воде используется для изготовления газированных вод. Пузырьки лимонада – тот самый углекислый газ. Первый аппарат для насыщения воды CO2 был изобретен еще в 1770 г., а уже в 1783 г. предприимчивый швейцарец Якоб Швепп начал промышленное производство газировки (торговая марка Schweppes существует до сих пор).

Углекислый газ тяжелее воздуха в 1,5 раза, поэтому имеет тенденцию «оседать» в его нижних слоях, если помещение плохо вентилируется. Известен эффект «собачьей пещеры», где CO2 выделяется прямо из земли и накапливается на высоте около полуметра. Взрослый человек, попадая в такую пещеру, на высоте своего роста не ощущает избытка углекислого газа, а вот собаки оказываются прямо в густом слое диоксида углерода и подвергаются отравлению.

CO2 не поддерживает горение, поэтому его используют в огнетушителях и системах пожаротушения. Фокус с тушением горящей свечки содержимым якобы пустого стакана (а на самом деле — углекислым газом) основан именно на этом свойстве диоксида углерода.

Углекислый газ в природе: естественные источники

Углекислый газ в природе образуется из различных источников:

  • Дыхание животных и растений.
    Каждому школьнику известно, что растения поглощают углекислый газ CO2 из воздуха и используют его в процессах фотосинтеза. Некоторые хозяйки пытаются обилием комнатных растений искупить недостатки . Однако растения не только поглощают, но и выделяют углекислый газ в отсутствие света – это часть процесса дыхания. Поэтому джунгли в плохо проветриваемой спальне – не очень хорошая идея: ночью уровень CO2 будет расти еще больше.
  • Вулканическая деятельность.
    Диоксид углерода входит в состав вулканических газов. В местностях с высокой вулканической активностью CO2 может выделяться прямо из земли – из трещин и разломов, называемых мофетами. Концентрация углекислого газа в долинах с мофетами столь высока, что многие мелкие животные, попав туда, умирают.
  • Разложение органических веществ.
    Углекислый газ образуется при горении и гниении органики. Объемные природные выбросы диоксида углерода сопутствуют лесным пожарам.

Углекислый газ «хранится» в природе в виде углеродных соединений в полезных ископаемых: угле, нефти, торфе, известняке. Гигантские запасы CO2 содержатся в растворенном виде в мировом океане.

Выброс углекислого газа из открытого водоема может привести к лимнологической катастрофе, как это случалось, например, в 1984 и 1986 гг. в озерах Манун и Ньос в Камеруне. Оба озера образовались на месте вулканических кратеров – ныне они потухли, однако в глубине вулканическая магма все еще выделяет углекислый газ, который поднимается к водам озер и растворяется в них. В результате ряда климатических и геологических процессов концентрация углекислоты в водах превысила критическое значение. В атмосферу было выброшено огромное количество углекислого газа, который наподобие лавины спустился по горным склонам. Жертвами лимнологических катастроф на камерунских озерах стали около 1 800 человек.

Искусственные источники углекислого газа

Основными антропогенными источниками диоксида углерода являются:

  • промышленные выбросы, связанные с процессами сгорания;
  • автомобильный транспорт.

Несмотря на то, что доля экологичного транспорта в мире растет, подавляющая часть населения планеты еще не скоро будет иметь возможность (или желание) перейти на новые автомобили.

Активное сведение лесов в промышленных целях также ведет к повышению концентрации углекислого газа СО2 в воздухе.

CO2 – один из конечных продуктов метаболизма (расщепления глюкозы и жиров). Он выделяется в тканях и переносится при помощи гемоглобина к легким, через которые выдыхается. В выдыхаемом человеком воздухе около 4,5% диоксида углерода (45 000 ppm) – в 60-110 раз больше, чем во вдыхаемом.

Углекислый газ играет большую роль в регуляции кровоснабжения и дыхания. Повышение уровня CO2 в крови приводит к тому, что капилляры расширяются, пропуская большее количество крови, которое доставляет к тканям кислород и выводит углекислоту.

Дыхательная система тоже стимулируется повышением содержания углекислого газа, а не нехваткой кислорода, как может показаться. В действительности нехватка кислорода долго не ощущается организмом и вполне возможна ситуация, когда в разреженном воздухе человек потеряет сознание раньше, чем почувствует нехватку воздуха. Стимулирующее свойство CO2 используется в аппаратах искусственного дыхания: там углекислый газ подмешивается к кислороду, чтобы «запустить» дыхательную систему.

Углекислый газ и мы: чем опасен СO2

Углекислый газ необходим человеческому организму так же, как кислород. Но так же, как с кислородом, переизбыток углекислого газа вредит нашему самочувствию.

Большая концентрация CO2 в воздухе приводит к интоксикации организма и вызывает состояние гиперкапнии. При гиперкапнии человек испытывает трудности с дыханием, тошноту, головную боль и может даже потерять сознание. Если содержание углекислого газа не снижается, то далее наступает черед – кислородного голодания. Дело в том, что и углекислый газ, и кислород перемещаются по организму на одном и том же «транспорте» – гемоглобине. В норме они «путешествуют» вместе, прикрепляясь к разным местам молекулы гемоглобина. Однако повышенная концентрация углекислого газа в крови понижает способность кислорода связываться с гемоглобином. Количество кислорода в крови уменьшается и наступает гипоксия.

Такие нездоровые для организма последствия наступают при вдыхании воздуха с содержанием CO2 больше 5 000 ppm (таким может быть воздух в шахтах, например). Справедливости ради, в обычной жизни мы практически не сталкиваемся с таким воздухом. Однако и намного меньшая концентрация диоксида углерода отражается на здоровье не лучшим образом.

Согласно выводам некоторых , уже 1 000 ppm CO2 вызывает у половины испытуемых утомление и головную боль. Духоту и дискомфорт многие люди начинают ощущать еще раньше. При дальнейшем повышении концентрации углекислого газа до 1 500 – 2 500 ppm критически , мозг «ленится» проявлять инициативу, обрабатывать информацию и принимать решения.

И если уровень 5 000 ppm почти невозможен в повседневной жизни, то 1 000 и даже 2 500 ppm легко могут быть частью реальности современного человека. Наш показал, что в редко проветриваемых школьных классах уровень CO2 значительную часть времени держится на отметке выше 1 500 ppm, а иногда подскакивает выше 2 000 ppm. Есть все основания предполагать, что во многих офисах и даже квартирах ситуация похожая.

Безопасным для самочувствия человека уровнем углекислого газа физиологи считают 800 ppm.

Еще одно исследование обнаружило связь между уровнем CO2 и окислительным стрессом: чем выше уровень диоксида углерода, тем больше мы страдаем от , который разрушает клетки нашего организма.

Углекислый газ в атмосфере Земли

В атмосфере нашей планеты всего около 0,04% CO2 (это приблизительно 400 ppm), а совсем недавно было и того меньше: отметку в 400 ppm углекислый газ перешагнул только осенью 2016 года. Ученые связывают рост уровня CO2 в атмосфере с индустриализацией: в середине XVIII века, накануне промышленного переворота, он составлял всего около 270 ppm.