Гармонические колебания и их графики. Гармоническое колебание

>> Гармонические колебания

§ 22 ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ

Зная, как связаны между собой ускорение и координата колеблющегося тела, можно на основе математического анализа найти зависимость координаты от времени.

Ускорение - вторая производная координаты по времени. Мгновенная скорость точки, как вам известно из курса математики , представляет собой производную координаты точки по времени. Ускорение точки - это производная ее скорости по времени, или вторая производная координаты по времени. Поэтому уравнение (3.4) можно записать так:

где х" - вторая производная координаты по времени. Согласно уравнению (3.11) при свободных колебаниях координата х изменяется со временем так, что вторая производная координаты по времени прямо пропорциональна самой координате и противоположна ей по знаку.

Из курса математики известно, что вторые производные синуса и косинуса по их аргументу пропорциональны самим функциям, взятым с противоположным знаком. В математическом анализе доказывается, что никакие другие функции таким свойством не обладают. Все это позволяет с полным основанием утверждать, что координата тела, совершающего свободные колебания, меняется с течением времени по закону синуса или пасинуса. На рисунке 3.6 показано изменение координаты точки со временем по закону косинуса .

Периодические изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса, называются гармоническими колебаниями.

Амплитуда колебаний. Амплитудой гармонических колебаний называется модуль наибольшего смещения тела от положения равновесия.

Амплитуда может иметь различные значения в зависимости от того, насколько мы смещаем тело от положения равновесия в начальный момент времени, или от того, какая скорость сообщается телу. Амплитуда определяется начальными условиями, а точнее энергией, сообщаемой телу. Но максимальные значения модуля синуса и модуля косинуса равны единице. Поэтому решение уравнения (3.11) не может выражаться просто синусом или косинусом. Оно должно иметь вид произведения амплитуды колебаний х m на синус или косинус.

Решение уравнения, описывающего свободные колебания . Запишем решение уравнения (3.11) в следующем виде:

а вторая производная будет равна:

Мы получили уравнение (3.11). Следовательно, функция (3.12) есть решение исходного уравнения (3.11). Решением этого уравнения будет также функция


График зависимости координаты тела от времени согласно (3.14) представляет собой косинусоиду (см. рис. 3.6).

Период и частота гармонических колебаний . При колебаниях движения тела периодически повторяются. Промежуток времени Т, за который система совершает один полный цикл колебаний, называется периодом колебаний.

Зная период, можно определить частоту колебаний, т. е. число колебаний в единицу времени, например за секунду. Если одно колебание совершается за время Т, то число колебаний за секунду

В Международной системе единиц (СИ) частота колебаний равна единице, если за секунду совершается одно колебание. Единица частоты называется герцем (сокращенно: Гц) в честь немецкого физика Г. Герца.

Число колебаний за 2 с равно:

Величина - циклическая, или круговая, частота колебаний. Если в уравнении (3.14) время t равно одному периоду, то T = 2. Таким образом, если в момент времени t = 0 х = х m , то и в момент времени t = Т х = х m , т. е. через промежуток времени, равный одному периоду, колебания повторяются.

Частоту свободных колебаний нааынают собственной частотой колебательной системы 1 .

Зависимость частоты и периода свободных колебаний от свойств системы. Собственная частота колебаний тела, прикрепленного к пружине, согласно уравнению (3.13) равна:

Она тем больше, чем больше жесткость пружины k, и тем меньше, чем больше масса тела m. Это легко понять: жесткая пружина сообщает телу большее ускорение, быстрее меняет скорость тела. А чем тело массивнее, тем медленнее оно наменяет скорость под влиянием силы. Период колебаний равен:

Располагая набором пружин различной жесткости и телами различной массы, нетрудно убедиться на опыте, что формулы (3.13) и (3.18) правильно описывают характер зависимости и Т от k и m.

Замечательно, что период колебаний тела на пружине и период колебаний маятника при малых углах отклонения не зависят от амплитуды колебаний.

Модуль коэффициента пропорциональности между ускорением t , и смещением х в уравнении (3.10), описывающем колебания маятника, представляет собой, как и в уравнении (3.11), квадрат циклической частоты. Следовательно, собственная частота колебаний математического маятника при малых углах отклонения нити от вертикали зависит от длины маятника и ускорения свободного падения:

Эта формула была впервые получена и проверена на опыте голландским ученым Г. Гюйгенсом - современником И. Ньютона. Она справедлива только для малых углов отклонения нити.

1 Часто в дальнейшем для краткости мы будем называть циклическую частоту просто частотой. Отличить циклическую частоту от обычной частоты можно по обозначениям.

Период колебаний возрастает с увеличением длины маятника . От массы маятника он не зависит. Это легко проверить на опыте с различными маятниками. Зависимость периода колебаний от ускорения свободного падения также можно обнаружить. Чем меньше g, тем больше период колебаний маятника и, следовательно, тем медленнее идут часы с маятником. Так, часы с маятником в виде груза на стержне отстанут за сутки почти на 3 с, если их поднять из подвала на верхний этаж Московского университета (высота 200 м). И это только за счет уменьшения ускорения свободного падения с высотой.

Зависимость периода колебаний маятника от значения g используется на практике. Измеряя период колебаний, можно очень точно определить g. Ускорение свободного падения меняется с географической широтой. Но и на данной широте оно не везде одинаково. Ведь плотность земной коры не всюду одинакова. В районах, где залегают плотные породы, ускорение g несколько большее. Это учитывают при поисках полезных ископаемых.

Так, железная руда обладает повышенной плотностью по сравнению с обычными породами. Проведенные под руководством академика А. А. Михайлова измерения ускорения свободного падения под Курском позволили уточнить места залегания железной руды. Сначала они были обнаружены посредством магнитных измерений.

Свойства механических колебаний используются в устройствах большинства электронных весов. Взвешиваемое тело кладут на платформу, под которой установлена жесткая пружина. В результате возникают механические колебания, частота которых измеряется соответствующим датчиком. Микропроцессор, связанный с этим датчиком, переводит частоту колебаний в массу взвешиваемого тела, так как эта частота зависит от массы.

Полученные формулы (3.18) и (3.20) для периода колебаний свидетельствуют о том, что период гармонических колебаний зависит от параметров системы (жесткости пружины, длины нити и т. д.)

Мякишев Г. Я., Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. - 17-е изд., перераб. и доп. - М. : Просвещение, 2008. - 399 с: ил.

Полный перечень тем по классам, календарный план согласно школьной программе по физике онлайн , видеоматериал по физике для 11 класса скачать

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Движение маятника в часах, землетрясение, переменный ток в электрической цепи, процессы радиопередачи и радиоприема - это совершенно различные, не связанные друг с другом процессы. Каждый из них имеет свои особые причины, но их объединяет один признак - признак общности характера изменения физических величин с течением времени. Эти и многие другие процессы различной физической природы во многих случаях оказывается целесообразным рассматривать как один особый тип физических явлений - колебания.

Общий признак физических явлений, называемых колебаниями, - это их повторяемость во времени. При различной физической природе многие колебания происходят по одинаковым законам, что позволяет применять общие методы для их описания и анализа.

Гармонические колебания. Из большого числа различных колебаний в природе и технике особенно часто встречаются гармонические колебания. Гармоническими называют колебания, совершающиеся по закону косинуса или синуса:

где - величина, испытывающая колебания; - время; - постоянная величина, смысл которой будет выяснен далее.

Максимальное значение величины, изменяющейся по гармоническому закону, называют амплитудой колебаний. Аргумент косинуса или синуса при гармонических колебаниях называют фазой колебания

Фазу колебания в начальный момент времени называют начальной фазой. Начальная фаза определяет значение величины в начальный момент времени

Значения функции синуса или косинуса при изменении аргумента функции на повторяются, поэтому при гармонических колебаниях значения величины повторяются при изменении фазы колебания на . С другой стороны, при гармоническом колебании величина должна принимать те же значения через интервал времени, называемый периодом колебаний Т. Следовательно, изменение фазы на происходит

через период колебаний Т. Для случая, когда получим:

Из выражения (1.2) следует, что постоянная в уравнении гармонических колебаний есть число колебаний, происходящих за секунд. Величину называют циклической частотой колебаний. Используя выражение (1.2), уравнение (1.1) можно выразить через частоту или период Т колебаний:

Наряду с аналитическим способом описания гармонических колебаний широко используют графические способы их представления.

Первый способ - задание графика колебаний в декартовой системе координат. По оси абсцисс откладывают время I, а по оси ординат - значение изменяющейся величины Для гармонических колебаний этот график - синусоида или косинусоида (рис. 1).

Второй способ представления колебательного процесса - спектральный. По оси ординат отсчитывают амплитуду, а по оси абсцисс - частоту гармонических колебаний. Гармонический колебательный процесс с частотой и амплитудой представлен в этом случае вертикальным отрезком прямой длиной проведенным от точки с координатой на оси абсцисс (рис. 2).

Третий способ описания гармонических колебаний - метод векторных диаграмм. В этом способе используют следующий, чисто формальный прием для нахождения в любой момент времени значения величины изменяющейся по гармоническому закону:

Выберем на плоскости произвольно направленную координатную ось по которой будем отсчитывать интересующую нас величину Из начала координат вдоль оси проведем вектор модуль которого равен амплитуде гармонического колебания хт. Если теперь представим себе, что вектор вращается вокруг начала координат в плоскости с постоянной угловой скоростью со против часовой стрелки, то угол а между вращающимся вектором и осью в любой момент времени определится выражением.


Уравнение гармонического колебания

Уравнение гармонического колебания устанавливает зависимость координаты тела от времени

График косинуса в начальный момент имеет максимальное значение, а график синуса имеет в начальный момент нулевое значение. Если колебание начинаем исследовать из положения равновесия, то колебание будет повторять синусоиду. Если колебание начинаем рассматривать из положения максимального отклонения, то колебание опишет косинус. Или такое колебание можно описать формулой синуса с начальной фазой .

Изменение скорости и ускорения при гармоническом колебании

Не только координата тела изменяется со временем по закону синуса или косинуса. Но и такие величины, как сила , скорость и ускорение , тоже изменяются аналогично. Сила и ускорение максимальные, когда колеблющееся тело находится в крайних положениях, где смещение максимально, и равны нулю, когда тело проходит через положение равновесия. Скорость, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия - достигает максимального значения.

Если колебание описывать по закону косинуса

Если колебание описывать по закону синуса

Максимальные значения скорости и ускорения

Проанализировав уравнения зависимости v(t) и a(t), можно догадаться, что максимальные значения скорость и ускорение принимают в том случае, когда тригонометрический множитель равен 1 или -1. Определяются по формуле

1.18. ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ И ИХ ХАРАКТЕРИСТИКИ

Определение гармонических колебаний. Характеристики гармонических колебаний: смещение от положения равновесия, амплитуда колебаний, фаза колебания, частота и период колебаний. Скорость и ускорение колеблющейся точки. Энергия гармонического осциллятора. Примеры гармонических осцилляторов: математический, пружинный, крутильный и физиче ский маятники.

Акустика, радиотехника, оптика и другие разделы науки и техники базируются на учении о колебаниях и волнах. Большую роль играет теория колебаний в механике, в особенности в расчетах на прочность летательных аппаратов, мостов, отдельных видов машин и узлов.

Колебания являются процессами, повторяющимися через одинаковые промежутки времени (при этом далеко не все повторяющиеся процессы являются колебаниями!). В зависимости от физической природы повторяющегося процесса различают колебания механические, электромагнитные, электромеханические и т.п. При механических колебаниях периодически изменяются положения и координаты тел.

Возвращающая сила - сила, под действием которой происходит колебательный процесс. Эта сила стремится тело или материальную точку, отклоненную от положения покоя, вернуть в исходное положение.

В зависимости от характера воздействия на колеблющееся тело различают свободные (или собственные) колебания и вынужденные колебания.

В зависимости от характера воздействия на колеблющуюся систему различают свободные колебания, вынужденные, автоколебания и параметрические колебания.

    Свободными (собственными) колебаниями называются такие колебания, которые происходят в системе, предоставленной самой себе после того, как ей был сообщен толчок, либо она была выведена из положения равновесия, т.е. когда на колеблющееся тело действует только возвращающая сила.. Примером могут служить колебания шарика, подвешенного на нити. Для того, чтобы вызвать колебания, надо либо толкнуть шарик, либо, отведя в сторону, отпустить его. В том случае, если не происходит рассеивания энергии, свободные колебания являются незатухающими. Однако, реальные колебательные процессы являются затухающими, т.к. на колеблющееся тело действуют силы сопротивления движению (в основном силы трения).

    · Вынужденными называются такие колебания, в процессе которых колеблющаяся система подвергается воздействию внешней периодически изменяющейся силы (например, колебания моста, возникающие при прохождении по нему людей, шагающих в ногу). Во многих случаях системы совершают колебания, которые можно считать гармоническими.

    · Автоколебания , как и вынужденные колебания, сопровождаются воздействием на колеблющуюся систему внешних сил, однако, моменты времени, когда осуществляются эти воздействия, задаются самой колеблющейся системой. То есть система сама управляет внешним воздействием. Примером автоколебательной системы являются часы, в которых маятник получает толчки за счет энергии поднятой гири или закрученной пружины, причем эти толчки происходят в моменты прохождения маятника через среднее положение.

    · Параметрические колебания осуществляются при периодическом изменении параметров колеблющейся системы (качающийся на качелях человек периодически поднимает и опускает свой центр тяжести, тем самым меняя параметры системы). При определенных условиях система становится неустойчивой - случайно возникшее отклонение из положения равновесия приводит к возникновению и нарастанию колебаний. Это явление называется параметрическим возбуждением колебаний (т.е. колебания возбуждаются за счет изменения параметров системы), а сами колебания – параметрическими.

Несмотря на разную физическую природу, для колебаний характерны одни и те же закономерности, которые исследуются общими методами. Важной кинематической характеристикой является форма колебаний. Она определяется видом той функции времени, которая описывает изменение той или иной физической величины при колебаниях. Наиболее важными являются такие колебания, при которых колеблющаяся величина изменяется со временем по закону синуса или косинуса . Они называются гармоническими .

Гармоническими колебаниями называются колебания, при которых колеблющаяся физическая величина изменяется по закону синуса (или косинуса).

Этот вид колебаний особенно важен по следующим причинам. Во-первых, колебания в природе и в технике часто имеют характер очень близких к гармоническим. Во-вторых, периодические процессы иной формы (с другой зависимостью от времени) могут быть представлены как наложение, или суперпозиция,гармонических колебаний.

Уравнение гармонического осциллятора

Гармоническое колебание описывается периодическим законом:

Рис. 18.1. Гармоническое колебание

З

десь
- характеризует изменение какой-либо физической величины при колебаниях (смещение положения маятника из положения равновесия; напряжение на конденсаторе в колебательном контуре и т.д.), A - амплитуда колебаний ,
- фаза колебаний , - начальная фаза ,
- циклическая частота ; величину
называют также собственной частотой колебаний. Такое название подчеркивает, что эта частота определяется параметрами колебательной системы. Система, закон движения которой имеет вид (18.1), называется одномерным гармоническим осциллятором . Помимо перечисленных величин для характеристики колебаний вводят понятия периода , т.е. времени одного колебания.

(Периодом колебаний T называется наименьший промежуток времени, по истечении которого повторяются состояния колеблющейся системы (совершается одно полное колебание) и фаза колебания получает приращение 2p).

и частоты
, определяющей число колебаний в единицу времени. За единицу частоты принимается частота такого колебания, период которого равен 1 с. Эту единицу называют герцем (Гц ).

Частотой колебаний n называется величина обратная периоду колебаний - число полных колебаний, совершаемых в единицу времени.

Амплитуда - максимальное значение смещения или изменения переменной величины при колебательном или волновом движении.

Фаза колебаний - аргумент периодической функции или описывающей гармонический колебательный процесс (ω- угловая частота, t - время, - начальная фаза колебаний, то есть фаза колебаний в начальный момент времени t = 0).

Первая и вторая производные по времени от гармонически колеблющейся величины также совершают гармонические колебания той же частоты:

В данном случае за основу взято уравнение гармонических колебаний, записанное по закону косинуса. При этом первое из уравнений (18.2) описывает закон, по которому изменяется скорость колеблющейся материальной точки (тела), второе уравнение описывает закон, по которому изменяется ускорение колеблющейся точки (тела).

Амплитуды
и
равны соответственно
и
. Колебание
опережает
по фазе на ; а колебание
опережает
на . Значения A и могут быть определены из заданных начальных условий
и
:

,
. (18.3)

Энергия колебаний осциллятора

П

Рис. 18.2. Пружинный маятник

осмотрим теперь, что будет происходить сэнергией колебаний . В качестве примера гармонических колебаний рассмотрим одномерные колебания, совершаемые телом массы m под действием упругой силы
(к примеру, пружинный маятник, см. рис. 18.2). Силы иной природы, чем упругие, но в которых выполняется условие F = -kx, называются квазиупругими. Под действием этих сил тела тоже совершают гармонические колебания. Пусть:

смещение:

скорость:

ускорение:

Т.е. уравнение таких колебаний имеет вид (18.1) с собственной частотой
. Квазиупругая сила является консервативной . Поэтому полная энергия таких гармонических колебаний должна оставаться постоянной. В процессе колебаний происходит превращение кинетической энергии E к в потенциальную E п и обратно, причем в моменты наибольшего отклонения от положения равновесия полная энергия равна максимальному значению потенциальной энергии, а при прохождении системы через положение равновесия полная энергия равна максимальному значению кинетической энергии. Выясним, как изменяется со временем кинетическая и потенциальная энергия:

Кинетическая энергия:

Потенциальная энергия:

(18.5)

Учитывая то, что т.е. , последнее выражение можно записать в виде:

Таким образом, полная энергия гармонического колебания оказывается постоянной. Из соотношений (18.4) и (18.5) также следует, что средние значения кинетической и потенциальной энергии равны друг другу и половине полной энергии, поскольку средние значения
и
за период равны 0,5. Используя тригонометрические формулы, можно получить, что кинетическая и потенциальная энергия изменяются с частотой
, т.е. с частотой в два раза превышающей частоту гармонического колебания.

В качестве примеров гармонического осциллятора могут быть пружинный, физический, математический маятники и крутильный маятники.

1. Пружинный маятник - это груз массой m, который подвешен на абсолютно упругой пружине и совершает гармонические колебания под действием упругой силы F = –kx, где k - жесткость пружины. Уравнение движения маятника имеет вид или (18.8) Из формулы (18.8) вытекает, что пружинный маятник совершает гармонические колебания по закону х = Асоs(ω 0 t+φ) с циклической частотой

(18.9) и периодом

(18.10) Формула (18.10) верна для упругих колебаний в границах, в которых выполняется закон Гука, т. е. если масса пружины мала по сравнению с массой тела. Потенциальная энергия пружинного маятника, используя (18.9) и формулу потенциальной энергии предыдущего раздела, равна (см.18.5)

2. Физический маятник - это твердое тело, которое совершает колебания под действием силы тяжести вокруг неподвижной горизонтальной оси, которая проходит через точку О, не совпадающую с центром масс С тела (рис. 1).

Рис.18.3 Физический маятник

Если маятник из положения равновесия отклонили на некоторый угол α, то, используя уравнение динамики вращательного движения твердого тела, момент M возвращающей силы (18.11) где J - момент инерции маятника относительно оси, которая проходит через точку подвеса О, l – расстояние между осью и центром масс маятника, F τ ≈ –mgsinα ≈ –mgα - возвращающая сила (знак минус указывает на то, что направления F τ и α всегда противоположны; sinα ≈ α поскольку колебания маятника считаются малыми, т.е. маятника из положения равновесия отклоняется на малые углы). Уравнение (18.11) запишем как

Или Принимая (18.12) получим уравнение

Идентичное с (18.8), решение которого найдем и запишем как:

(18.13) Из формулы (18.13) вытекает, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой ω 0 и периодом

(18.14) где введена величина L=J/(ml ) - . Точка О" на продолжении прямой ОС, которая отстоит от точки О подвеса маятника на расстоянии приведенной длины L, называется центром качаний физического маятника (рис. 18.3). Применяя теорему Штейнера для момента инерции оси, найдем

Т. е. ОО" всегда больше ОС. Точка подвеса О маятника и центр качаний О" имеют свойство взаимозаменяемости : если точку подвеса перенести в центр качаний, то прежняя точка О подвеса будет новым центром качаний, и при этом не изменится период колебаний физического маятника.

3. Математический маятник - это идеализированная система, состоящая из материальной точки массой m, которая подвешена на нерастяжимой невесомой нити, и которая колеблется под действием силы тяжести. Хорошее приближение математического маятника есть небольшой тяжелый шарик, который подвешен на длинной тонкой нити. Момент инерции математического маятника

(8) где l - длина маятника.

Поскольку математический маятник есть частный случай физического маятника, если предположить, что вся его масса сосредоточена в одной точке - центре масс, то, подставив (8) в (7), найдем выражение для периода малых колебаний математического маятника (18.15) Сопоставляя формулы (18.13) и (18.15), видим, что если приведенная длина L физического маятника равна длине l математического маятника, то периоды колебаний этих маятников одинаковы. Значит, приведенная длина физического маятника - это длина такого математического маятника, у которого период колебаний совпадает с периодом колебаний данного физического маятника. Для математического маятника (материальной точки массой m , подвешенной на невесомой нерастяжимой нити длиной l в поле силы тяжести с ускорением свободного падения равным g ) при малых углах отклонения (не превышающих 5-10 угловых градусов) от положения равновесия собственная частота колебаний:
.

4. Тело, подвешенное на упругой нити или другом упругом элементе, совершающее колебания в горизонтальной плоскости, представляет собой крутильный маятник.

Эта механическая колебательная система, которая использует силы упругих деформаций. На рис. 18.4 показан угловой аналог линейного гармонического осциллятора, совершающий крутильные колебания. Горизонтально расположенный диск висит на упругой нити, закрепленной в его центре масс. При повороте диска на угол θ возникает момент сил M упр упругой деформации кручения:

где I = I C – момент инерции диска относительно оси, проходящий через центр масс, ε – угловое ускорение.

По аналогии с грузом на пружине можно получить.

Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

где х - значение изменяющейся величины, t - время, остальные параметры - постоянные: А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде

(Любое нетривиальное решение этого дифференциального уравнения - есть гармоническое колебание с циклической частотой )

Виды колебаний

    Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Чтобы свободные колебания были гармоническими, необходимо, чтобы колебательная система была линейной (описывалась линейными уравнениями движения), и в ней отсутствовала диссипация энергии (последняя вызвала бы затухание).

    Вынужденные колебания совершаются под воздействием внешней периодической силы. Чтобы они были гармоническими, достаточно чтобы колебательная система была линейной (описывалась линейными уравнениями движения), а внешняя сила сама менялась со временем как гармоническое колебание (то есть чтобы зависимость от времени этой силы была синусоидальной).

Уравнение гармонических колебаний

Уравнение (1)

дает зависимость колеблющейся величины S от времени t; это и есть уравнение свободных гармонических колебаний в явном виде. Однако обычно под уравнением колебаний понимают иную запись этого уравнения, в дифференциальной форме. Возьмем для определенности уравнение (1) в виде

дважды продифференцируем его по времени:

Видно, что выполняется следующее соотношение:

которое и называется уравнением свободных гармонических колебаний (в дифференциальной форме). Уравнение (1) является решением дифференциального уравнения (2). Поскольку уравнение (2) - дифференциальное уравнение второго порядка, необходимы два начальных условия для получения полного решения (то есть определения входящих в уравнение (1) констант A и  ); например, положение и скорость колебательной системы при t = 0.

Математи́ческий ма́ятник - осциллятор, представляющий собой механическую систему, состоящую изматериальной точки, находящейся на невесомой нерастяжимой нити или на невесомом стержне в однородном поле сил тяготения. Период малых собственных колебаний математического маятника длины l неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен

и не зависит от амплитуды и массы маятника.

Физический маятник - осциллятор, представляющий собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.