Паропроницаемость строительных материалов таблица. Паропроницаемость стен – избавляемся от вымыслов

С целью ее разгромождения

Расчеты единиц паропроницаемости и сопротивления паропроницанию. Технические характеристики мембран.

Часто, вместо величины Q используют величину сопротивления паропроницанию, по нашему это Rп (Па*м2*ч/мг), зарубежное Sd (м). Сопротивление паропроницанию обратная величина Q. При том импортная Sd - та же Rп, только выраженная в виде эквивалентного диффузионного сопротивления паропроницанию слоя воздуха (эквивалентная диффузионная толщина воздуха).
Вместо того чтобы дальше рассуждать словами соотнесем Sd и Rп численно.
Что значит Sd=0,01м=1см?
Это значит что плотность диффузионного потока при перепаде dP составляет:
J=(1/Rп)*dP=Dv*dRo/Sd
Здесь Dv=2,1e-5м2/с коэффициент диффузии водяного пара в воздухе (взятый при 0градC)/
Sd - наше самое Sd, а
(1/Rп)=Q
Преобразуем правое равенство воспользовавшись законом идеального газа (P*V=(m/M)*R*T => P*M=Ro*R*T => Ro=(M/R/T)*P)и видим.
1/Rп=(Dv/Sd)*(M/R/T)
Отсюда пока не понятное нам Sd=Rп*(Dv*M)/(RT)
Чтобы получить верный результат нужно все представить в единицах Rп,
точнее Dv=0,076 м2/ч
M=18000 мг/моль - молярная масса воды
R=8,31 Дж/моль/К - универсальная газовая постоянная
T=273К - температура по шкале Кельвина, соответствующая 0градC где и будем вести расчеты.
Итак, все подставляя имеем:

Sd= Rп*(0,076*18000)/(8,31*273)=0,6Rп или наоборот:
Rп=1,7Sd.
Здесь Sd - тот самый импортный Sd [м], а Rп [Па*м2*ч/мг] - наше сопротивление паропроницанию.
Также Sd можно связать с Q - паропроницаемостью.
Имеем, что Q=0,56/Sd , здесь Sd [м], а Q [мг/(Па*м2*ч)].
Проверим полученные соотношения. Для этого возьме технические характеристики различных мембран и подставим.
Для начала возьму данные по Tyvek отсюда
Данные в итоге интересные, но не очень пригодные для проеврки формул.
В частности для мембраны Soft получаем Sd=0,09*0,6=0,05м. Т.е. Sd в таблице занижен в 2,5 раза или, соответсвенно завышен Rп.

Беру дальше данные с просторов интернета. По мембране Fibrotek
Воспользуюсь последней парой данных проницаемость, в данном случае Q*dP=1200 г/м2/сут, Rп=0,029 м2*ч*Па/мг
1/Rп=34,5 мг/м2/ч/Па=0,83 г/м2/сут/Па
Отсюда вытащим перепад абсолютной влажности dP=1200/0,83=1450Па. Данная влажность соответствует точке росы 12,5град или влажности 50% при 23град.

На просторах интернета также обнаружил на ином форуме фразу:
Т.е. 1740 нг/Па/с/м2=6,3 мг/Па/ч/м2 соответствует паропроницаемости ~250г/м2/сут.
Попробую получить такое соотношение сам. Упоминается, что величина в г/м2/сут измеряется в том числе при 23град. Берем полученную ранее величину dP=1450Па и имеем приемлемое схождение результатов:
6,3*1450*24/100=219 г/м2/сут. Ура-ура.

Итак, теперь мы умеем соотносить паропроницаемость которую можете встретить в таблицах и сопротивление паропроницанию.
Осталось еще убедится что полученное выше соотношение между Rп и Sd верно. Пришлось порыться и нашел мембрану для которой приведены обе величины (Q*dP и Sd), при том Sd конкретная величина, а не "неболее". Перфорированная мембрана на основе ПЭ пленки
И вот данные:
40,98 г/м2/сут => Rп=0,85 =>Sd=0,6/0,85=0,51м
Опять не сходится. Но в принципе результат недалек, что учитывая то что неизвестно при каких параметрах определена паропроницаемость вполне нормально.
Что интересно, по Tyvek получили несхождение в одну сторону, по IZOROL в другую. Что говорит о том что везде каким-то величинам доверять нельзя.

PS Буду признателен за поиски ошибок и сравнений с иными данными и нормативами.

Чтобы создать в доме благоприятный для проживания климат, нужно учитывать свойства используемых материалов.Особое внимание стоит уделить паропроницаемости. Этим термином называется способность материалов пропускать пары. Благодаря знаниям о паропроницаемости можно правильно подобрать материалы для создания дома.

Оборудование для определения степени проницаемости

Профессиональные строители имеют специализированное оборудование, которое позволяет точно определить паропроницаемость определенного строительного материала. Для вычисления описываемого параметра применяется следующее оборудование:

  • весы, погрешность которых является минимальной;
  • сосуды и чаши, необходимые для проведения опытов;
  • инструменты, позволяющие точно определить толщину слоев строительных материалов.

Благодаря таким инструментам точно определяется описываемая характеристика. Но данные о результатах опытов занесены в таблицы, поэтому во время создания проекта дома не обязательно определять паропроницаемость материалов.

Что нужно знать

Многие знакомы с мнением, что «дышащие» стены полезны для проживающих в доме. Высокими показателями паропроницаемости обладают следующие материалы:

  • дерево;
  • керамзит;
  • ячеистый бетон.

Стоит отметить, что стены, сделанные из кирпича или бетона, также обладают паропроницаемостью, но этот показатель является более низким. Во время скопления в доме пара он выводится не только через вытяжку и окна, но еще и через стены. Именно поэтому многие считают, что в строениях из бетона и кирпича дышится «тяжело».

Но стоит отметить, что в современных домах большая часть пара уходит через окна и вытяжку. При этом через стены уходит всего лишь около 5 процентов пара. Важно знать о том, что в ветреную погоду из строения, выполненного из дышащих стройматериалов, быстрее уходит тепло. Именно поэтому во время строительства дома следует учитывать и другие факторы, влияющие на сохранение микроклимата в помещении.

Стоит помнить, что чем выше коэффициент паропроницаемости, тем больше стены вмещают в себя влаги. Морозостойкость стройматериала с высокой степенью проницаемости является низкой. При намокании разных стройматериалов показатель паропроницаемости может увеличиваться до 5 раз. Именно поэтому необходимо грамотно производить закрепление пароизоляционных материалов.

Влияние паропроницаемости на другие характеристики

Стоит отметить, что, если во время строительства не был установлен утеплитель, при сильном морозе в ветреную погоду тепло из комнат будет уходить достаточно быстро. Именно поэтому необходимо грамотно производить утепление стен.

При этом долговечность стен с высокой проницаемостью является более низкой. Это связано с тем, что при попадании пара в стройматериал влага начинает застывать под воздействием низкой температуры. Это приводит к постепенному разрушению стен. Именно поэтому при выборе стройматериала с высокой степенью проницаемости необходимо грамотно установить пароизоляционный и теплоизоляционный слой. Чтобы узнать паропроницаемость материалов стоит использовать таблицу, в которой указаны все значения.

Паропроницаемость и утепление стен

Во время утепления дома необходимо соблюдать правило, согласно которому паропрозрачность слоев должна увеличиваться по направлению наружу. Благодаря этому зимой не будет происходить накопление воды в слоях, если конденсат станет накапливаться в точке росы.

Утеплять стоит изнутри, хотя многие строители рекомендуют закреплять тепло- и пароизоляцию снаружи. Это объясняется тем, что пар проникает из помещения и при утеплении стен изнутри влага не будет попадать в стройматериал. Часто для внутреннего утепления дома применяется экструдированный пенополистирол. Коэффициент паропроницаемости такого строительного материала является низким.

Еще одним способом утепления является разделение слоев при помощи пароизолятора. Также можно применить материал, который не пропускает пар. В пример можно привести утепление стен пеностеклом. Несмотря на то, что кирпич способен впитывать влагу, пеностекло препятствует проникновению пара. В таком случае кирпичная стена будет служить аккумулятором влаги и во время скачков уровня влажности станет регулятором внутреннего климата помещений.

Стоит помнить, что если утеплить стены неправильно, стройматериалы могут потерять свои свойства уже через небольшой отрезок времени. Именно поэтому важно знать не только о качествах используемых компонентов, но еще и о технологии их закрепления на стенах дома.

От чего зависит выбор утеплителя

Часто владельцы домов для утепления используют минеральную вату. Данный материал отличается высокой степенью проницаемости. По международным стандартам сопротивления паропроницаемости равен 1. Это означает, что минеральная вата в этом отношении практически не отличается от воздуха.

Именно об этом многие производители минеральной ваты упоминают достаточно часто. Часто можно встретить упоминание о том, что при утеплении кирпичной стены минеральной ватой ее проницаемость не снизится. Это действительно так. Но стоит отметить, что ни один материал, из которого изготавливаются стены, не способен выводить такое количество пара, чтобы в помещениях сохранялся нормальный уровень влажности. Также важно учитывать, что многие отделочные материалы, которые используются при оформлении стен в комнатах, могут полностью изолировать пространство, не пропуская пар наружу. Из-за этого паропроницаемость стены значительно уменьшается. Именно поэтому минеральная вата незначительно влияет на обмен паром.

Всем известно, что комфортный температурный режим, и, соответственно, благоприятный микроклимат в доме обеспечивается во многом благодаря качественной теплоизоляции. В последнее время ведется очень много споров о том, какой должна быть идеальная теплоизоляция и какими характеристиками она должна обладать.

Существует ряд свойств теплоизоляции, важность которых не вызывает сомнения: это теплопроводность, прочность и экологичность. Совершенно очевидно, что эффективная теплоизоляция должна обладать низким коэффициентом теплопроводности, быть прочной и долговечной, не содержать веществ, вредных для человека и окружающей среды.

Однако есть одно свойство теплоизоляции, которое вызывает массу вопросов – это паропроницаемость. Должен ли утеплитель пропускать водяной пар? Низкая паропроницаемость – достоинство это или недостаток?

Аргументы «за» и «против»

Сторонники ватных утеплителей уверяют, что высокая паропропускная способность – это несомненный плюс, паропроницаемый утеплитель позволит стенам вашего дома «дышать», что создаст благоприятный микроклимат в помещении даже при отсутствии какой-либо дополнительной системы вентиляции.

Адепты же пеноплэкса и его аналогов заявляют: утеплитель должен работать как термос, а не как дырявый «ватник». В свою защиту они приводят следующие аргументы:

1. Стены – это вовсе не «органы дыхания» дома. Они выполняют совершенно иную функцию – защищают дом от воздействия окружающей среды. Органами дыхания для дома является вентиляционная система, а также, частично, окна и дверные проемы.

Во многих странах Европы приточно-вытяжная вентиляция устанавливается в обязательном порядке в любом жилом помещении и воспринимается такой же нормой, как и централизованная система отопления в нашей стране.

2. Проникновение водяного пара сквозь стены является естественным физическим процессом. Но при этом количество этого проникающего пара в жилом помещении с обычным режимом эксплуатации настолько мало, что его можно не брать в расчет (от 0,2 до 3%* в зависимости от наличия/отсутствия системы вентиляции и её эффективности).

* Погожельски Й.А, Каспэркевич К. Тепловая защита многопанельных домов и экономия энергии, плановая тема NF-34/00, (машинопись), библиотека ITB.

Таким образом, мы видим, что высокая паропроницаемость не может выступать в качестве культивируемого преимущества при выборе теплоизоляционного материала. Теперь попробуем выяснить, может ли данное свойство считаться недостатком?

Чем опасна высокая паропроницаемость утеплителя?

В зимнее время годы, при минусовой температуре за пределами дома, точка росы (условия, при которых водяной пар достигает насыщения и конденсируется) должна находиться в утеплителе (в качестве примера взят экструдированный пенополистирол).

Рис.1 Точка росы в плитах ЭППС в домах с облицовкой по утеплителю

Рис.2 Точка росы в плитах ЭППС в домах каркасного типа

Получается, что если теплоизоляция имеет высокую паропроницаемость, то в ней может скапливаться конденсат. Теперь выясним, чем же опасен конденсат в утеплителе?

Во-первых, при образовании в утеплителе конденсата он становится влажным. Соответственно, снижаются его теплоизоляционные характеристики и, наоборот, увеличивается теплопроводность. Таким образом, утеплитель начинает выполнять противоположную функцию – выводить тепло из помещения.

Известный в области теплофизики эксперт, д.т.н., профессор, К.Ф. Фокин заключает: «Гигиенисты рассматривают воздухопроницаемость ограждений как положительное качество, обеспечивающее естественную вентиляцию помещений. Но с теплотехнической точки зрения воздухопроницаемость ограждений скорее отрицательное качество, так как в зимнее время инфильтрация (движение воздуха изнутри-наружу) вызывает дополнительные потери тепла ограждениями и охлаждение помещений, а эксфильтрация (движение воздуха снаружи-вовнутрь) может неблагоприятно отразиться на влажностном режиме наружных ограждений, способствуя конденсации влаги».

Кроме того в СП 23-02-2003 «Тепловая защита зданий» раздел №8 указано, что воздухопроницаемость ограждающих конструкций для жилых зданий должна быть не более 0,5 кг/(м²∙ч).

Во-вторых , вследствие намокания теплоизолятор утяжеляется. Если мы имеем дело с ватным утеплителем, то он проседает, и образуются мостики холода. К тому же возрастает нагрузка на несущие конструкции. Через несколько циклов: мороз – оттепель такой утеплитель начинает разрушаться. Чтобы защитить влагопроницаемый утеплитель от намокания его прикрывают специальными пленками. Возникает парадокс: утеплитель дышит, но ему требуется защита полиэтиленом, либо специальной мембраной, которая сводит на нет все его «дыхание».

Ни полиэтилен, ни мембрана не пропускают молекулы воды в утеплитель. Из школьного курса физики известно, что молекулы воздуха (азот, кислород, углекислый газ) размером больше, чем молекула воды. Соответственно, воздух также не способен проходить через подобные защитные пленки. В итоге мы получаем помещение с дышащим утеплителем, но покрытое воздухонепроницаемой пленкой – своеобразную теплицу из полиэтилена.

В отечественных нормах сопротивление паропроницаемости (сопротивление паропроницанию Rп, м2. ч. Па/мг ) нормируется в главе 6 "Сопротивление паропроницанию ограждающих конструкций" СНиП II-3-79 (1998) "Строительная теплотехника".

Международные стандарты паропроницаемости строительных материалов приводятся в стандартах ISO TC 163/SC 2 и ISO/FDIS 10456:2007(E) - 2007 год.

Показатели коэффициента сопротивления паропроницанию определяются на основании международного стандарта ISO 12572 "Теплотехнические свойства строительных материалов и изделий - Определение паропроницаемости". Показатели паропроницаемости для международных норм ISO определялись лабораторным способом на выдержанных во времени (не только что выпущенных) образцах строительных материалов. Паропроницаемость определялась для строительных материалов в сухом и влажном состоянии.
В отечественном СНиП приводятся лишь расчетные данные паропроницаемости при массовом отношении влаги в материале w, %, равном нулю.
Поэтому для выбора строительных материалов по паропроницаемости при дачном строительстве лучше ориентироваться на международные стандарты ISO , котрые определяют паропроницаемость "сухих" строительных материалов при влажности менее 70% и "влажных" строительных материалов при влажности более 70%. Помните, что при оставлении "пирогов" паропроницаемых стен, паропроницаемость материалов изнутри-кнаружи не должна уменьшаться, иначе постепенно произойдет "замокание" внутренних слоев строительных материалов и значительно увеличится их теплопроводность.

Паропроницаемость материалов изнутри кнаружи отапливаемого дома должна уменьшаться: СП 23-101-2004 Проектирование тепловой защиты зданий, п.8.8: Для обеспечения лучших эксплуатационных характеристик в многослойных конструкциях зданий с теплой стороны следует располагать слои большей теплопроводности и с большим сопротивлением паропроницанию, чем наружные слои. По данным Т.Роджерс (Роджерс Т.С. Проектирование тепловой защиты зданий. / Пер. с англ. - м.: си, 1966) Отдельные слои в многослойных ограждениях следует располагать в такой последовательности, чтобы паропроницаемость каждого слоя нарастала от внутренней поверхности к наружной. При таком расположении слоев водяной пар, попавший в ограждение через внутреннюю поверхность с возрастающей легкостью, будет проходить через все спои ограждения и удаляться из ограждения с наружной поверхности. Ограждающая конструкция будет нормально функционировать, если при соблюдении сформулированного принципа, паропроницаемость наружного слоя, как минимум, в 5 раз будет превышать паропроницаемость внутреннего слоя.

Механизм паропроницаемости строительных материалов:

При низкой относительной влажности влага из атмосферы в виде отдельных молекул водяного пара. При повышении относительной влажности поры строительных материалов начинают заполняться жидкостью и начинают работать механизмы смачивания и капиллярного подсоса. При повышении влажности строительного материала его паропроницаемость увеличивается (снижается коэффициент сопротивления паропроницаемости).

Показатели паропроницаемости "сухих" строительных материалов по ISO/FDIS 10456:2007(E) применимы для внутренних конструкций отапливаемых зданий. Показатели паропроницаемости "влажных" строительных материалов применимы для всех наружных конструкций и внутрених конструкций неотапливаемых зданий или дачных домов с переменным (временным) режимом отопления.

Сам термин «паропроницаемость» указывает на свойство материалов пропускать или задерживать в своей толще водяной пар. Таблица паропроницаемости материалов носит условный характер, поскольку приведенные расчетные значения уровня влажности и атмосферного воздействия не всегда соответствуют действительности. Точку росы возможно рассчитать согласно среднему значению.

У каждого материала свой процент паропроницаемости

Определение уровня проницаемости пара

В арсенале профессиональных строителей имеются специальные технические средства, которые позволяют с высокой точностью диагностировать проницаемость пара конкретного строительного материала. Чтобы вычислить параметр, применяются следующие средства:

  • приспособления, делающие возможным безошибочно установить толщину слоя строительного материала;
  • лабораторная посуда для выполнения исследований;
  • весы с максимально точными показаниями.

В этом видео вы узнаете о паропроницаемости:

С помощью такого инструментария можно корректно определить искомую характеристику. Так как данные экспериментов заносятся в таблицы паропроницаемости строительных материалов, во время составления плана жилища нет необходимости устанавливать паропроницаемость строительных материалов.

Создание комфортных условий

Для создания в жилище благоприятного микроклимата требуется принимать во внимание особенности используемого строительного сырья. Особый акцент следует сделать на паропроницаемости. Обладая знаниями об этой способности материала, можно корректно подобрать необходимое для строительства жилья сырье. Данные берутся из строительных норм и правил, например:

  • паропроницаемость бетона: 0,03 мг/(м*ч*Па);
  • паропроницаемость ДВП, ДСП: 0,12-0,24 мг/(м*ч*Па);
  • паропроницаемость фанеры: 0,02 мг/(м*ч*Па);
  • керамического кирпича: 0,14-0,17 мг/(м*ч*Па);
  • кирпича силикатного: 0,11 мг/(м*ч*Па);
  • рубероида: 0-0,001 мг/(м*ч*Па).

Образование пара в жилом доме может быть вызвано дыханием человека и животных, приготовлением еды, перепадом температур в ванной комнате и прочими факторами. Отсутствие вытяжной вентиляции также создаёт высокую степень влажности в помещении. В зимний период нередко можно замечать возникновение конденсата на окнах и на холодном трубопроводе. Это наглядный пример появления пара в жилых домах.

Защита материалов при строительстве стен

Стройматериалы с высокой проницаемостью пара не могут в полной мере гарантировать отсутствие образования конденсата внутри стен. Чтобы не допустить скопления воды в глубине стен, следует избегать разности давления одной из составных частей смеси газообразных элементов водяного пара с обеих сторон стройматериала.

Обеспечить защиту от появления жидкости реально, используя ориентированно-стружечные плиты (ОСП), утепляющие материалы, такие как пеноплекс и пароизоляционная плёнка или мембрана, препятствующая просачиванию пара в теплоизоляцию. Одновременно с защитным слоем требуется организовать корректный воздушный зазор для вентиляции.

Если у стенового пирога нет достаточной способности поглощать пар, он не рискует быть разрушенным в результате расширения конденсата от низких температур. Основное требование - это предотвратить скопление влаги внутри стен и предоставить её беспрепятственное передвижение и выветривание.

Немаловажным условием является установка вентиляционной системы с принудительной вытяжкой, которая не даст скапливаться лишней жидкости и пару в помещении. Выполняя требования, можно защитить стены от образования трещин и повысить износоустойчивость жилища в целом.

Расположение термоизолирующих слоев

Для обеспечения лучших эксплуатационных характеристик многослойной конструкции сооружения пользуются следующим правилом: сторона с более высокой температурой обеспечивается материалами с повышенной сопротивляемостью к просачиванию пара с высоким коэффициентом теплопроводности.

Наружный слой должен обладать высокой паропроводимостью. Для нормальной эксплуатации ограждающего сооружения нужно, чтобы индекс внешнего слоя пятикратно превосходил значения внутреннего слоя. При соблюдении этого правила водяные пары, попавшие в теплый пласт стены, без особых усилий покинут его через более ячеистые стройматериалы. Пренебрегая этими условиями, внутренний слой стройматериалов сыреет, и его коэффициент теплопроводности становится выше.

Подбор отделки также играет важную роль на финальных этапах строительных работ. Правильно подобранный состав материала гарантирует ему результативное выведение жидкости во внешнюю среду, поэтому даже при минусовой температуре материал не разрушится.

Индекс проницаемости пара является ключевым показателем при расчете величины поперечного сечения утеплительного слоя. От достоверности произведенных вычислений будет зависеть, насколько качественным получиться утепление всего здания.