Циклы основных тепловых машин и установок. Теплосиловые установки

ПАРОСИЛОВОЙ УСТАНОВКИ

Паросиловые установки (ПСУ) предназначаются для получения электрической энергии и водяного пара, идущего на производственные нужды промышленных предприятий. В настоящее время все крупные химические заводы и комбинаты имеют свои собственные ПСУ.

На рис.20 представлена принципиальная схема паросиловой установки. ПСУ состоит из парового котла (1,1"), паровой турбины (2), конденсатора (3) и питательного насоса (4). Паровой котел является сложным инженерным сооружением. На схеме условно изображены лишь два его элемента – барабан котла (1) и пароперегреватель (1").

Рис. 20. Принципиальная схема паросиловой установки

Работа установки состоит в следующем. Питательная вода (конденсат и вода, возвращающаяся с предприятия) насосом (4) нагнетается в барабан парового котла (1). В барабане за счет химической теплоты топлива, которое сжигается в топке котла (топка на рис. 3 не показана), а в некоторых случаях за счет энергетического потенциала горючих или высокотемпературных вторичных энергоресурсов вода при постоянном давлении превращается во влажный насыщенный пар (Х = 0,9 – 0,95). Затем влажный насыщенный пар поступает в пароперегреватель котла (1"), где перегревается до заданной температуры. Перегретый пар направляется в паровую турбину (2). Здесь он адиабатно расширяется с получением полезной работы, которая с помощью генератора трансформируется в электрическую энергию. Современные турбины имеют ряд отборов, через которые пар направляется на технологические нужды цехов промышленного предприятия. После турбины отработанный пар направляется в конденсатор (3). Конденсатор представляет из себя обычный кожухотрубный теплообменник, основное назначение которого состоит в создании вакуума за турбиной. Это приводит к повышению теплопадения в турбине, что повышает экономичность цикла ПСУ. В конденсаторе за счет отвода теплоты от отработанного пара к охлаждающей воде он конденсируется. Полученный конденсат насосом (4) вновь подается в барабан котла.

Рис. 21. Цикл П.С.У. в Р – υ и Т – S диаграммах

На рис. 21 представлен цикл ПСУ в диаграммах Р – υ и Т – S. В этих диаграммах линия 1–2–3–4 соответствует изобарному процессу получения перегретого пара в паровом котле. Участок 1-2 характеризует процесс нагревания питательной воды до температуры кипения, участок 2-3 соответствует процессу парообразования, т.е. превращение воды в пар, участок 3-4 характеризует процесс перегрева пара. Линия 4-5 отражает адиабатный процесс расширения пара в турбине. Отрезок 5-6 – изобарный процесс конденсации пара в конденсаторе. Линия 6-1 характеризует процесс повышения давления питательной воды в насосе. Процесс повышения давления воды в насосе практически протекает при постоянной температуре и без теплообмена с окружающей средой. Кроме того, учитывая, что жидкости практически не сжимаются, это можно считать и изохорным. При этих условиях процесс 6-1 протекает при q = 0, Т = const, υ = Р – υ и Т – S и S = Р – υ и Т – S. Поэтому линия 6-1 в Т - S диаграмме трансформируется в точку.

При анализе циклов паросиловых установок вводятся следующие понятия:

1. Техническая работа турбины . Под технической работой турбины понимают работу всех термодинамических процессов цикла.

Для изобарного процесса 1-4 имеем:

(7.12)

В процессе адиабатного расширения пара в турбине:

При изобарном процессе конденсации в конденсаторе:

(7.14)

Для процесса 6-1, характеризующего техническую работу насоса при q = 0,

Т = const , υ = const и S = const, получаем

Следовательно:

2. Работа цикла . Работа цикла определяется как разность между технической работой Трубины и работой затрачиваемой насосом.

Оценка эффективности цикла ПСУ осуществляется с помощью коэффициентов полезного действия цикла. Различают термический и внутренний относительный КПД цикла. Под термическим коэффициентом полезного действия цикла понимают отношение работы цикла к теплоте, подведенной от верхнего источника. Работа цикла определяется по формуле (7.17). Верхним источником теплоты в данном случае являются дымовые газы, получаемые в процессе горения топлива, или высокотемпературные В.Э.Р.

Теплота от верхнего источника к рабочему телу (q 1 ) подводится в паровом котле в процессе 1-2-3-4. Эта теплота численно равна:

В этом случае термический КПД цикла ПСУ можно записать следующим образом:

(7.19)

На практике при анализе работы ПСУ часто используют формулу, не учитывающую работу насоса, ввиду ее малости по сранению с технической работой цикла:

(7.20)

где Δh – теплопадение в турбине.

В действительном цикле ПСУ адиабатный процесс расширения в соплах паровой турбины является необратимым. Необратимость связана с возрастанием энтропии, поэтому действительное теплопадение Δh д меньше теоретического Δh . На рис. 22 представлено теоретическое и действительное теплопадение в паровой турбине в h - S диаграмме.

Рис. 22. Графическое представление теплопадения в турбине на h – S диаграмме.

Термический КПД реального цикла ПСУ определится по выражению.

Как было сказано выше, реакторную установку можно представить в виде тепловой машины, в которой осуществляется некий термодинамический цикл.

Теоретическим циклом современной паросиловой установки является цикл Ренкина.

Пароводяная смесь образовавшаяся в результате передачи тепловой энергии воде в активной зоне поступает в Барабан - сепаратор где происходит разделение пара и воды. Пар направляется в паровую турбину, где расширяясь адиабатно, совершает работу. Из турбины отработавший пар направляется в конденсатор. Там происходит отдача теплоты охлаждающей воде, проходящей через конденсатор. Вследствие этого пар полностью конденсируется. Полученный конденсат непрерывно засасывается насосом из конденсатора, сжимается и направляется вновь в барабан сепаратор.

Конденсатор играет двоякую роль в установке.

Во-первых, он имеет паровое и водяное пространство, разделенные поверхностью, через которую происходит теплообмен между отработавшим паром и охлаждающей водой. Поэтому конденсат пара может быть использован в качестве идеальной воды, не содержащей растворенных солей.

Во-вторых, в конденсаторе вследствие резкого уменьшения удельного объема пара при его превращении в капельножидкое состояние наступает вакуум, который будучи поддерживаемым в течение всего времени работы установки, позволяет пару расширяться в турбине еще на одну атмосферу (Рк 0,04-0,06 бар) и совершать за счет этого дополнительную работу.

Цикл Ренкина в T-S диаграмме.

Синяя линия в Т-S диаграмме воды является разделительной, при энтропии и температуре, соответствующим точкам, лежащим на диаграмме выше этой линии, существует только пар, ниже пароводяная смесь.

Влажный пар в конденсаторе полностью конденсируется по изобаре p2=const (точка 3). Затем вода сжимается насосом от давления P2 до давления P1, этот адиабатный процесс изображен в T-S-диаграмме вертикальным отрезком 3-5.

Длина отрезка 3-5 в T-S-диаграмме весьма мала, так как в области жидкости, изобары (линии постоянного давления) в T-S-диаграмме проходят очень близко друг от друга. Благодаря этому при изоэптропном (при постоянной энтропии) сжатии воды, температура воды возрастает менее чем на 2-3 єС, и можно с хорошей степенью приближения считать, что в области жидкости изобары воды практически совпадают с левой пограничной криво (синяя линия); поэтому зачастую при изображении цикла Ренкина в Т-S-диаграмме изобары в области жидкости изображают сливающимися с левой пограничной кривой. Малая величина отрезка адиабаты 3-5 свидетельствует о малой работе, затрачиваемой насосом на сжатие воды. Малая величина работы сжатия по сравнению с величиной работы, производимой водяным паром в процессе расширения 1-2, является важным преимуществом цикла Ренкина.

Из насоса вода под давлением P2 поступает в барабан сепаратор, а затем в реактор, где к ней в изобарно (процессе 5-4 P1=const) подводится тепло. Вначале вода в реакторе нагревается до кипения (участок 5-4 изобары P1=const) а затем, по достижении температуры кипения, происходит процесс парообразования (участок 4-3 изобары P2=const). Пароводяная смесь поступает в барабан-сепаратор, где происходит разделение воды и пара. Насыщенный пар, из барабана сепаратора поступает в турбину. Процесс расширения в турбине изображается адиабатой 1-2 (Этот процесс относится к классическому циклу Ренкина в реальной установке процесс расширения пара в турбине несколько отличается от классического). Отработанный влажный пар поступает в конденсатор, и цикл замыкается.

С точки зрения термического к.п.д. цикл Ренкина представляете менее выгодным, чем цикл Карно, изображенный выше, поскольку степень заполнения цикла (равно как и средняя температур подвода тепла) для цикла Ренкина оказывается меньше, чем в случае цикла Карно. Однако с учетом реальных условий осуществления экономичность цикла Ренкина выше экономичности соответствующего цикла Карно во влажном паре.

Для того чтобы увеличить термический к.п.д. цикла Ренкина, часто применяют так называемый перегрев пара в специальном элемент установки - пароперегревателе, где пар нагревается до температуры, превышающей температуру насыщения при данном давлении P1. В этом случае средняя температура подвода тепла увеличивается по сравнению с температурой подвода тепла в цикле без перегрева и, следовательно, термический к.п.д. цикла возрастает. Цикл Ренкина с перегревом пара является основным циклом теплосиловых установок, применяемых в современной теплоэнергетике.

Поскольку в настоящее время не существует промышленных энергетических установок с ядерным перегревом пара (перегрев пара непосредственно в активной зоне ядерного реактора), то для одноконтурных ядерных реакторов BWR и РБМК используется цикл с промежуточным перегревом пара.

Т-S диаграмма цикла с промежуточным перегревом пара.


Для повышения КПД в цикле с промежуточным перегревом пара, используется двух ступенчатая турбина, состоящая из цилиндра высокого давления и нескольких (4 для РБМК) цилиндров низкого давления. Пар из барабана сепаратора направляется в цилиндр высокого давления (ЦВД), часть пара отбирается для перегрева. Расширяясь в цилиндре высокого давления процесс на диаграмме 1-6, пар совершает работу. После ЦВД пар направляется в пароперегреватель, где за счет охлаждения отобранной в начале части пара, осушается и нагревается до более высокой температуры, (но уже при более низком давлении, процесс 6-7 на диаграмме) и поступает в цилиндры низкого давления турбины (ЦНД). В ЦНД пар расширяясь, снова совершает работу (процесс 7-2 на диаграмме) и поступает в конденсатор. Остальные процессы соответствуют процессам в выше рассмотренном цикле Ренкина.

Регенеративный цикл.

Малое значение КПД цикла Ренкина по сравнению с циклом Карно связано с тем, что большое количество тепловой энергии при конденсации пара передается охлаждающей воде в конденсаторе. Для снижения потерь часть пара из турбины отбирается и направляется на регенерационные подогреватели, где тепловая энергия, высвобождаемая при конденсации отобранного пара, используется для подогрева воды, полученной после конденсации основного парового потока.

В реальных паросиловых циклах регенерация осуществляется с помощью регенеративных, поверхностных или смешивающих, теплообменников, в каждый из которых поступает пар из промежуточных ступеней турбины (так называемый регенеративный отбор). Пар конденсируется в регенеративных теплообменниках, нагревая питательную воду, поступающую в реактор. Конденсат греющего пара смешивается с основным потоком питательной воды.

Общие положения. На современных тепловых электростанциях большой мощности превращение теплоты в работу производится в циклах, в которых в качестве основного рабочего тела используется водяной пар высокого давления и температуры. Водяной пар производят в парогенераторах (паровых котлах), в топках которых сжигают различные виды органического топлива: уголь, мазут, газ и др.

Термодинамический цикл преобразования теплоты в работу с помощью водяного пара был предложен в середине XIX в. инженером и физиком У. Ренкиным. Принципиальная тепловая схема электростанции, работающая по циклу Ренкина, показана на рис. 2.1.

Рис. 2.1.

1 - парогенератор; 2 - турбина; 3 - электрогенератор; 4 - конденсатор; 5 - насос

Вода нагнетается в парогенератор 1 насосом 5 и за счет теплоты сжигаемого топлива превращается в водяной пар, который затем поступает в турбину 2, вращающую электрогенератор 3. Тепловая энергия пара преобразуется в турбине в механическую работу, которая, в свою очередь, преобразуется в генераторе в электроэнергию. Из турбины отработанный пар поступает в конденсатор 4. В конденсаторе пар превращается в воду (конденсируется), которая с помощью насоса 5 вновь подается в парогенератор. Таким образом цикл замыкается.

На рис. 2.2 показан цикл Ренкина на перегретом паре в р, v- и Т, 5-диаграммах, состоящий из следующих процессов:

изобара 4-5-6-] - нагрев, испарение воды и перегрев пара в парогенераторе за счет подводимой теплоты сгорания топлива


Рис. 2.2. Цикл Ренкина на перегретом паре: а - в р, v-диаграмме; б - в Т,s -диаграмме

адиабата 1-2 - расширение пара в турбине с совершением полезной внешней работы II ;

изобара 2-3 - конденсация отработанного пара с отводом теплоты 2 охлаждающей водой;

адиабата 3-4 - сжатие конденсата питательным насосом до первоначального давления в парогенераторе с затратой подводимой извне работы / а н.

В соответствии со вторым законом термодинамики полезная работа за цикл равна разности подведенной и отведенной в цикле теплоты:

Термический КПД цикла Ренкина определяется, как обычно, по уравнению

Термодинамические исследования цикла Ренкина показывают, что его эффективность в большой степени зависит от величин начальных и конечных параметров пара (давления и температу- ры).

Как уже отмечалось ранее, энергию пара (рабочего тела) при изменении его состояния удобно оценивать величиной энтальпии. Так, количество теплоты, подводимой в изобарном процессе 4-5-6-1 (см. рис. 2.2) при нагреве воды, парообразовании и перегреве (Дж/кг), q x = / (- i 2 , где i 2 - энтальпия конденсата, подаваемого в котел. Количество теплоты, отдаваемой в изобарном процессе 2-3 при конденсации пара, q 2 = i 2 - i 2 . Полезная работа, совершаемая в турбине

Термический КПД цикла Ренкина в этом случае

Количество пара, которое требуется пропустить через турбину, чтобы получить 1 кВт ч (3600 Дж) энергии, т.е. теоретический удельный расход пара

Тогда полный расход пара при мощности N (кВт) можно определить по формуле

Исследование выражений (2.1) и (2.2) показывает, что ц, увеличивается, a d уменьшается с увеличением /, и уменьшением / 2 , т.е. с увеличением начальных параметров пара р х и /, и уменьшением конечных р 2 и t 2 . Конечные параметры пара связаны между собой, так как пар в этой области влажный, поэтому уменьшение их сводится к уменьшению р 2 , т. е. давления в конденсаторе.

Увеличение /, ограничивается жаропрочностью материалов, увеличение д, - допустимой степенью влажности пара в конце расширения. Повышенная влажность > 0,80...0,86) приводит к эрозии деталей турбины.

В настоящее время на электростанциях в основном используются следующие параметры пара: д, = 23,5 МПа (240 кгс/см 2) и t x = 565 °С. На опытных установках применяются и сверхкритические параметры: р х = 29,4 МПа (300 кгс/см 2) и /| = 600...650°С.

Понижение давления в конденсаторе ниже значения р 2 = 3,5... 4 кПа (0,035...0,040 кгс/м 2), чему соответствует температура насыщения 1 2 = 26,2...28,6°С, ограничивается прежде всего температурой охлаждающей воды / охл, колеблющейся в зависимости от климатических условий от 0 до 30 °С. При малой разности 1 2 - / охл интенсивность теплообмена падает, а размеры конденсатора растут. Кроме того, с понижением р 2 становится все большим удельный объем пара, что ведет к увеличению размера конденсатора, а также последних ступеней турбины. На рис. 2.3 и 2.4 графически показан характер влияния повышения д, и /| и понижения р г на термический КПД.

Регенеративный цикл. Для повышения экономичности работы паротурбинных установок, помимо повышения параметров пара, применяют так называемый регенеративный цикл, в котором питательная вода до ее поступления в котельный агрегат подвергается предварительному нагреву паром, отбираемым из промежуточных ступеней паровой турбины. На рис. 2.5 представлена принципиальная схема паросиловой установки с регенеративным подогревом питательной воды, где а.|, а 2 и а 3 - доли отбираемого пара из турбины. Изображение в Г, 5-диаграмме носит условный характер, так как количество пара (рабочего тела) меняется по длине проточной части турбины, а диаграмма строится для постоянного количества.

Рис. 2.3.

Следует отметить, что поскольку питательной воде передается теплота отобранного пара, включая теплоту парообразования, а при получении работы используется лишь часть теплоты пара, не включающая теплоту парообразования, то потеря работы в результате отборов будет значительно меньше, чем увеличение энтальпии питательной воды. Поэтому в целом КПД цикла возрастает. Однако возрастет и удельный расход пара, так как отобранная часть пара не полностью участвует в совершении работы и для получения заданной мощности его расход следует увеличить. Правда, это обстоятельство облегчает конструкцию последних ступеней турбин, позволяя уменьшить длину их лопаток.

Применение регенеративного подогрева позволяет при необходимости исключить экономайзер подогрева питательной воды уходящими газами, использовав теплоту уходящих газов для подогрева поступающего в топку воздуха.


Рис. 2.4. Влияние понижения давления в конденсаторе на влажность пара в конце расширения (а) и экономичность цикла Ренкина (б )


Рис. 2.5.

а - схема установки: 1 - котел; 2 - пароперегреватель; 3 - паровая турбина с промежуточными отборами пара; 4 - электрогенератор; 5 - регенеративные подогреватели; 6 - насосы; 7 - конденсатор; 6 - изображение (условное) процесса в Г,5-координатах: /...7- точки диаграммы

Увеличение КПД при применении регенерации составляет

10... 15 %. При этом экономия теплоты в цикле возрастает с повышением начального давления пара р х. Это связано с тем, что с повышением р х увеличивается температура кипения воды, а следовательно, повышается количество теплоты, которое можно подвести к воде при подогреве ее отобранным паром. В настоящее время регенеративный подогрев применяется на всех крупных электростанциях.

Цикл с промежуточным (вторичным) перегревом пара. Из анализа регенеративного цикла следует, что при применении пара высокого давления влажность его в турбине в конце процесса расширения становится значительной даже при очень высокой начальной температуре. Между тем работа турбин на влажном паре недопустима, так как она вызывает увеличение потерь и износ (эрозию) турбинных лопаток в результате механического воздействия на них находящихся в паре частиц влаги.

При использовании пара высокого давления повышение его начальной температуры до значений, допустимых по соображениям прочности металла пароперегревателя и паровой турбины, может оказаться недостаточным для обеспечения допустимой влажности пара в конце процесса расширения в турбине. Поэтому пар на некоторой стадии расширения приходится отводить из турбины и подвергать повторному перегреву в специальном пароперегревателе, после чего перегретый пар повторно вводится в турбину, где и заканчивается процесс его расширения. В результате этого при окончательном расширении пара до принятых на практике давлений влажность его не превышает допустимых значений.

Паротурбинные установки, в которых используется такой метод, называют установками с промежуточным перегревом пара. При правильном выборе давления отбора пара для его промежуточного перегрева и температуры промежуточного перегрева не только предотвращается чрезмерное увлажнение пара в конце


Рис. 2.6. Промежуточный перегрев пара в цикле Рснкина: а - схема установки: 1 - котел; 2 - пароперегреватель; 3 - турбина; 4 - электрогенератор; 5 - промежуточный (вторичный) пароперегреватель; 6 - конденсатор; 7 - насос (питательный); б - изображение процесса в Т,s- и /,3- координатах: 1...5- точки диаграммы

процесса расширения, но и достигается некоторое увеличение термического КПД установки.

Применение одного промежуточного перегрева пара приводит к повышению термического КПД установки на 2...3 %. Схема паросиловой установки с промежуточным перегревом пара представлена на рис. 2.6.

Рис. 2.7. Схема простейшей теплофикационной установки: / - котел; 2- пароперегреватель; 3 - турбина; 4 - конденсатор; 5- отопительная система; 6и 7 - насосы

Теплофикационный цикл. В тех случаях, когда прилегающие к тепловым электростанциям районы потребляют большое количество теплоты, целесообразно использовать комбинированный способ выработки теплоты и электроэнергии, чем раздельно снабжать эти районы теплотой от специальных котельных, а электроэнергией - от конденсационных электростанций. Установки, которые служат для комбинированной выработки теплоты и электроэнергии, называют теплоэлектроцентралями (ТЭЦ). Они работают по так называемому теплофикационному циклу.

Простейшая схема теплофикационной установки показана на рис. 2.7 с основными элементами паросиловой установки. Цифрой 5 обозначен тепловой потребитель (например, система отопления). Охлаждающая вода под действием насоса 6 циркулирует по замкнутому контуру, в который включен потребитель теплоты. Температура воды на выходе из конденсатора несколько ниже температуры конденсата / н, но достаточно высока д ля обогрева помещений.

Конденсат при температуре t H забирается насосом 7 и после сжатия подается в котел 1. Охлаждающая вода нагревается за счет теплоты конденсирующегося пара и под напором, создаваемым насосом 6, поступает в отопительную систему 5. В ней нагретая вода отдает теплоту окружающей среде, обеспечивая необходимую температуру помещений. После выхода из отопительной системы охлажденная вода вновь поступает в конденсатор и в нем опять нагревается поступающим из турбины паром.

При наличии более или менее постоянного потребителя производственного пара пользуются турбиной, работающей с противодавлением без конденсатора.

В теплофикационных установках, цикл которых показан на рис. 2.8, а , используются турбины трех типов: с противодавлением р 2 = 1,2... 12 бар (рис. 2.8, б); ухудшенным вакуумом/^ = 0,5...0,9 бар (рис. 2.8, в) и регулируемыми отборами пара (рис. 2.8, г).

Турбины с противодавлением относительно просты, малогабаритны и дешевы, но применяются редко, поскольку количество электроэнергии, вырабатываемое с их помощью, зависит не от электрических, а от тепловых потребителей, весьма нестабильных.

Турбины с ухудшенным вакуумом при отсутствии тепловых потребителей могут работать с расширением пара до глубокого вакуума, как конденсационные, но выработка электроэнергии у них тоже зависит от расхода теплоты.

Турбины с регулируемыми отборами не имеют указанных недостатков, позволяют свободно изменять электрическую и тепловую нагрузки, т.е. работать по свободному графику. Они в основном и применяются на ТЭЦ. На рис. 2.8, г приведена схема такой установки с одним регулируемым отбором пара при д ог6 (в зависимости от потребностей в электроэнергии и теплоте), которое устанавливается с помощью клапана 12, расположенного на магистрали между ступенями турбины высокого 11 и низкого 13 давлений.


Рис. 2.8. Теплофикационный цикл (а) и три типа установок: с противодавлением (б), ухудшенным вакуумом (в) и регулируемыми отборами

/... 10 - точки диаграммы; II - часть турбины высокого давления; 12 - регулятор количества отбираемого пара; 13 - часть турбины низкого давления

Теплофикационный цикл в Т, s- диаграмме показан на рис. 2.9. Площадь контура, ограниченного жирными линиями, соответствует теплоте q no „, превращенному в турбине в механическую работу. Площадь, расположенная под указанным контуром и соответствующая количеству теплоты q 2 , уносимому охлаждающей водой, в данном теоретическом случае не теряется бесполезно, а используется для отопления. Таким образом, общее количество полезного использования теплоты складывается из пол и q 2 ?

Рис. 2.9. Изображение теплофикационного цикла в Т, з-диаграмме

Термический КПД теплофикационного цикла ниже термического КПД соответствующего конденсационного цикла, в котором пар расширяется в турбине до очень низкого давления (/> 2 = 3 ...5 кПа), производя при этом полезную работу, и превращается в охладителе в конденсат, а отнятая от него в конденсаторе теплота полностью теряется с охлаждающей водой. Это объясняется тем, что в теплофикационном цикле конечное давление пара р 2 значительно превосходит обычное давление в конденсаторе паровой турбины, работающей по конденсационному циклу. Увеличению давления р 2 , как это видно из Г,5-диаграммы (см. рис. 2.9), соответствует сокращение количества теплоты q no „, используемой в паровой турбине (уменьшение площади 1-2-3-4-5), и увеличение количества теплоты q 2 , уносимой охлаждающей водой (увеличение площади 1-5-4"-Г), и в итоге - уменьшение гц.

Применительно к теплофикационному циклу его термический КПД не может служить полноценной мерой экономичности, поскольку он не учитывает полезное использование потребителем той части теплоты, которая не превращается в работу, т.е. теплоты q 2 .

Поэтому для оценки экономичности теплофикационных циклов пользуются так называемым коэффициентом использования теплоты, представляющим собой отношение всего количества полезно использованной теплоты (т.е. суммы теплоты, превращенной в работу и равной q n0 „, и теплоты, использованной потребителем без ее превращения в работу, равной q 2), ко всему количеству подведенной к рабочему телу теплоты:

Теоретически, поскольку q t = П0Л + q 2 , этот коэффициент равен единице. Практически же величина его колеблется от 0,65 до 0,7.

Это говорит о том, что в теплофикационном цикле степень тепло- использования почти в два раза больше, чем в чисто конденсационном цикле. Следовательно, комбинированный способ выработки теплоты и электрической энергии значительно экономичнее способа их раздельной выработки.

К. п. д. цикла Ренкина даже в установках с высокими параметрами пара не превышает 50%. В реальных установках из-за наличия внутренних потерь в турбине значение к. п. д. еще меньше.

На величины энтальпий, входящих в выражение (9) оказывают влияние три параметра рабочего тела –– начальное давление р 1 и начальная температура Т 1 перегретого пара на входе в турбину и конечное давление р 2 на выходе из турбины. Это приводит к увеличению теплоперепада и как следствие этого, к увеличению удельной работы и к. п. д. цикла.

Кроме изменения параметров пара повысить экономичность паросиловых установок можно за счет усложнения схем самой установки.

На основании выше сказанного выявляются следующие пути повышения термического к. п. д.

1. Повышение начального давления р 1 при неизменных параметрах Т 1 и р 2 (рис. 15, а ). На диаграмме показаны циклы Ренкина при максимальных давлениях р 1 и р 1а > р 1 . Сопоставление этих циклов показывает, что с увеличением давления до р 1а теплопререпад имеет большее значение, чем , а количество подводимой теплоты уменьшается. Такое изменение энергетических составляющих цикла с ростом давления р 1 увеличивает термический к. п. д. Этот метод дает значительное повышение эффективности цикла, но в результате повышения р 1 (давление в паросиловых установках может достигать до 30 ата) увеличивается влажность пара, выходящего из турбины, что вызывает преждевременную коррозию лопаток турбины.

2. Увеличение начальной температуры Т 1 при неизменных параметрах р 1 и р 2 (рис. 15, б ). Сопоставляя циклы в диаграмме при температурах Т 1 и Т 1а > Т 1 можно увидеть, что разность энтальпий увеличивается в большей степени чем разность , так как изобара протекает более круто, чем изобара . При таком изменении разности энтальпий с ростом максимальной температуры цикла термический к. п. д. возрастает. Недостатком этого метода является то, что для пароперегревателя требуется жаропрочный металл, температура перегретого пара может достигать до 650 °С.

3. Одновременное повышение давления р 1 и температуры Т 1 при постоянном давлении р 2 . Повышение как р 1 так и Т 1 увеличивает термический к. п. д. Влияние их на влажность пара в конце расширения противоположно, с повышением р 1 она возрастает, а с увеличением Т 1 –– уменьшается. В конечном итоге состояние пара будет определяться степенью изменения величин р 1 и Т 1 .

4. Понижение давление р 2 при постоянных параметрах Т 1 и р 1 (рис. 15, в ). С понижением р 2 увеличивается степень расширения пара в турбине и техническая работа возрастает ∆l = l a – l . При этом количество отводимой теплоты меньше, чем (изобара при меньшем давлении более пологая), а количество подводимой теплоты возрастает на величину . В результате термический к. п. д. цикла увеличивается. Понижая давление р 2 можно достигнуть на выходе из конденсатора температуры равной температуре окружающей среды, но при этом в конденсационном устройстве придется создавать вакуум, так как температуре соответствует давление р 2 = 0,04 ата.


5. Использование вторичного (промежуточного) перегрева пара (рис. 15, г ). На диаграмме прямая 1 2 показывает расширение пара до некоторого давления р 1а в первом цилиндре двигателя, линия 2–1 а –– вторичный перегрев пара при давлении р 1а и прямая 1 а –2 а –– адиабатное расширение пара во втором цилиндре до конечного давления р 2 .

Термический к. п. д. такого цикла определяется по выражению

Применение вторичного перегрева пара приводит к снижению влажности пара на выходе из турбины и к некоторому увеличению технической работы. Повышение к.п.д. в этом цикле незначительное, всего 2–3 %, и такая схема требует усложнения конструкции паровой турбины.

6. Применение регенеративного цикла . В регенеративном цикле питательная вода после насоса протекает через один или несколько регенераторов, где нагревается паром, частично отбираемым после расширения его в некоторых ступенях турбины (рис. 16).

Рис. 15. Пути повышения термического к.п.д. цикла Ренкина

Рис. 16. Схема паросиловой установки, работающей

по регенеративному циклу:

1 –– котел; 2 –– пароперегреватель; 3 –– паровая турбина; 4 –– электрогенератор; 5 –– охладитель-конденсатор; 6 –– насос; 7 –– регенератор; α –– доля отбора пара

Количество отобранного пара будет определяться из уравнения теплового баланса для регенератора

где –– энтальпия конденсата при конечном давлении пара р 2 ; –– энтальпия пара, отбираемого из турбины; –– энтальпия конденсата при давлении отбора пара.

Полезная работа 1 кг пара в турбине будет определяться по формуле:

Количество теплоты затраченной на 1 кг пара, составляет

Тогда термический к.п.д. в регенеративном цикле будет найден

.

Подробное исследование регенеративного цикла показывает, что его термический к.п.д. всегда больше термического к.п.д. цикла Ренкина с теми же начальными и конечными параметрами. Увеличение к.п.д. при использовании регенерации составляет 10–15 % и возрастает с увеличением количеств отбора пара.

7. Применение теплофикационного цикла . В теплофикационном цикле утилизируется теплота, отдаваемая паром охлаждающей воде, которая обычно используется в отопительных системах, в системах горячего водоснабжения и для других целей. При этом теплота q 1 , подводимая к рабочему телу, может в разной степени перераспределяться дл получения технической работы и теплоснабжения. В теплофикационном цикле (рис. 17) часть электроэнергии недорабатывается, так как часть теплоты пара отбираемого из турбины расходуется у потребителя.

Рис. 17. Схема паросиловой установки, работающей по

теплофикационному циклу:

1 –– котел; 2 –– пароперегреватель; 3 –– паровая турбина; 4 –– электрогенератор; 5 –– охладитель-конденсатор; 6 –– насос; 7 –– потребитель теплоты

Количество теплоты, полученное рабочим телом, частично превращается в полезную работу лопаток турбины , а частично затрачивается для целей теплоснабжения у потребителей . Поскольку и та и другая работы являются полезными, то термический к. п. д. теряет свой смысл.

К.п.д. теплофикационного цикла будет определяться

.

Так как в теплофикационном цикле вырабатывается два вида продукции (электроэнергия и теплота), то приходится различать внутренний КПД по выработке теплоты и средневзвешенный КПД по выработке электроэнергии и теплоты. Каждый из них равен единице, поскольку в пределах цикла потерь нет.

В реальности к.п.д. теплофикационного цикла не может быть равен единице, так как всегда существуют механические потери в турбине и гидравлические потери в системах теплоснабжения.

Как известно, тепловая машина, работающая по циклу Карно, обладает самой большой эффективностью преобразования энергии, т. е., ее термиче­ский КПД наибольший из возможных. Термический КПД цикла Карно зависит только от температур теплоотдатчика Ti и теплоприемника Т2 и совершенно не зависит от природы рабочего тела. Поэтому этот цикл можно рассматривать как идеальный цикл и для паросиловой установки. Как известно, цикл Карно включает следующие процессы :

Изотермический процесс расширения с одновременным подводом тепло­вой энергии Qi;

Адиабатический процесс расширения;

Изотермический процесс сжатия с одновременным отводом тепловой энергии Q2]

Адиабатический процесс сжатия.

На рис. 11.3 показана индикаторная диаграмма цикла паросиловой уста­новки, работающей по циклу Карно. Вода при давлении pi и температуре T 8 1 поступает в (точка 0 ). Степень сухости пара в точке 0 равна х = 0. Точка 0 находится на пограничной кривой жидкости. В процессе 0-1 при постоянном давлении р\ = Idem (изобарный процесс) к воде подводится энергия Qi в тепловой форме. Линия 0-1 представляет собой и изобару, и изотерму. В точке 1 изобарно — изотермический процесс подвода тепловой энергии заканчивается, когда пар становится сухим на­сыщенным. Степень сухости пара в точке 1 равна х = 1. Точка 1 находится на пограничной кривой пара. Таким образом, процесс 0-1 подвода тепловой энергии является изотермическим , как и в цикле Карно.

Процесс 1-2 отражает адиабатическое (без теплообмена с окружающей средой) расширение рабочего тела в паровой машине (двигателе). Здесь также соблюдается условие протекания цикла Карно (адиабатическое рас­ширение). В адиабатном процессе 1-2 давление пара уменьшается от pi до ft.

После паровой машины пар поступает в конденсатор (точка 2). В конденсаторе происходит отвод энергии Q 2 от рабочего тела (охлаждение) при постоянном давлении Р2 - Idem (изобарный процесс 2-3). Изобара 2-3 Одновременно является и изотермой при температуре кипения жидкости T 9 2, соответствующей давлению р2 = Idem . При охлаждении удельный объем водяного пара уменьшается. В точке 3 изобарно-изотермический процесс отвода тепловой энергии от рабочего тела заканчивается. Точка 3 (окончание процесса) выбирается таким образом, чтобы в процессе адиабатического сжатия влажного пара процесс заканчивался в точке 0, соответствующей начальному состоянию рабочего тела в цикле.

Таким образом, показанный на рис. 11.3 цикл 0-1-2-3-0 состоит из двух изотерм (0-1 и 2-3) и двух адиабат (1-2 и 3-0).

На рнс. 11.3 видно, что точка 3 расположена в области влажного насы­щенного пара. Это означает, что в процессе 2-3 происходит не полная кон­денсация водяного пара, поступающего в конденсатор из тепловой машины. Следовательно, в конденсаторе (КН) (рис. 11.1) образуется смесь пара и жидкости (воды). По выходе из конденсатора эта смесь направляется в компрессор, где в результате повышения давления от Р2Д0 рх повышается также температура от Ta 2 до T 8 1, и рабочее тело возвращается в исходное состояние (точка 0). На рис. 11.4 показана тепловая (энтропийная) диа­грамма протекания паросилового цикла Карно.

Если подвод тепловой энергии к жидкости закончить в точке 1′ (рис. 11.3 и 11.4), то пар не станет сухим насыщенным (он будет оста­ваться влажным насыщенным). Тогда расширение пар в тепловом двига­теле пойдет по адиабате V -2\ а весь цикл будет изображаться линиями 0-1′-2′-3-0.

Rm 3 Я2

Для осуществления цикла Карно в паросиловой установке необходи­мо соблюдать одно условие: весь цикл должен совершаться в области насыщенного пара (нельзя выходить вправо за линию х = 1). Область, расположенная правее линии х = 1, является областью перегретого пара. Если в области перегретого пара (правее линии х = 1) подводить тепловую энергию к рабочему телу при постоянном давлении (pi = Idem ), то темпе­ратура рабочего тела будет повышаться. Такой процесс будет изобарным, но не изотермическим, как должно быть в цикле Карно. Такой цикл не будет удовлетворять условиям протекания цикла Карно.

На основании зависимости (8.50) применительно к рассматриваемому паросиловому циклу запишем:

W Gi -g 2 Г1-Г2 (лл АЛ

TOC \o "1-3" \h \z % = - = -- = -7р- (И-4)

Из выражения (11.4) имеем:

Тг-Т2

^ = (И.5)

Где W - удельная работа, совершаемая паром в паровой машине (двигате­ле).

В котле температура жидкости равна температуре кипения Ta 1, соот­ветствующей давлению pi. Это означает, что вся подводимая к жидкости в котле тепловая энергия расходуется только на увеличение паросодержания от х = 0 (пограничная кривая жидкости) до х = 1 (пограничная кривая пара). Следовательно, в процессе 0-1 (рис. 11.3) парообразования будет затрачено следующее количество энергии в тепловой форме:

9i= хт, (11.6)

Где х - степень сухости пара, определяемая по формуле (6.1); г - удельная теплота парообразования.

На пограничной кривой жидкости степень сухости пара равна нулю (х = 0). На пограничной кривой пара х = 1, а поэтому выражение (12.6) для этого случая принимает вид:

Объединяя выражения (11.5) и (11.6"), получим:

Ti-T2 ГкДжТ §лл

Наряду с термическим КПД т^ важной характеристикой паросилового цикла является удельный расход пара DQ , определяемый по формуле:

Do = H = X ^ Rfr T ,) * (1L8)

Из уравнений (11.7) и (11.8) видно, что удельный расход пара в паросиловом цикле, осуществляемому по циклу Карно при неизменных температурах 7\ и Т2, зависит только от паросодержания Х\. Чем больше паросодержание Xi, тем большую удельную работу W совершает пар в паровой машине при данных условиях, и тем меньший удельный расход пара DQ . Наибольшие значения удельной работы W и наименьшие значения удельного расхода пара DQ будут иметь место при х = 1.

Пусть сухой насыщенный пар давлением 1 МПа должен совершить цикл Карно в идеальной паросиловой установке. Требуется определить удельную работу пара в цикле и термический КПД, если давление в конденсаторе равно 10 кПа.

Для решения задачи следует воспользоваться данными, приведенными в Приложении 1. «Зависимость параметров насыщенного водяного пара от давления ». При давлении 1 МПа жидкость кипит при температуре, равной T 8 1 = 179.88°С, а при давлении ЮкПа -ie2 = 45.84°С. Тогда в соответствии с выражением (11.4) можно записать:

^ _ (1.1+ +273.15) _0 Я6| M11 29.6%.

Из Приложения 1 находим, что при pi = 1 МПа, г = 2015 кДж/кг. Из выражения (11.7) имеем:

Гх-Гз ГкДж]

W = x1-r Т ^ = Хг-r-rit J .

Так как пар сухой насыщенный, то Х\ = 1, а поэтому последнее выражение принимает вид:

W = R R ) T = 2015 0.296 « 596 .

Из сказанного выше следует, что осуществление цикла Карно в паро­силовой установке, когда рабочее тело представляет собой влажный пар, вполне возможно. Поскольку критическая температура воды сравнительно небольшая 374°С), что соответствует точке К на рис. 11.3, то невелик и интервал температур, в котором можно осуществить цикл Карно в паросиловой установке. Если нижнюю температуру принять равной 25°С, а верхнюю -не выше 340… 350°С, то максимальное значение термического КПД цикла Карно в этом случае будет равно:

При осуществлении цикла Карно в паросиловой установке максималь­ную температуру влажного пара нельзя выбирать сколь угодно, так как верхний предел ограничен значением 7\ = 374°С (точка К; рис. 11.3). По мере приближения к критической точке К (рис. 11.3) длина изобарно- изотермического участка 0-1 уменьшается, а в точке К он вовсе исчезает.

Чем выше температура рабочего тела в цикле, тем больший КПД этого цикла. Но поднять температуру рабочего тела выше 340…350°С в паросиловой установке, работающей по циклу Карно, не представляется возможным, что ограничивает КПД такой установки.

Хотя термический КПД паросиловой установки, работающей по циклу Карно, относительно большой, с учетом условий работы теплосилового обо­рудования он практической реализации почти не получил. Это обусловлено тем, что при работе на влажном паре, который представляет собой поток сухого насыщенного пара со взвешенными в нем капельками воды, условия работы проточных частей паровых турбин (поршневых паровых машин) и компрессоров оказываются тяжелыми, течение оказывается газодинами­чески несовершенным и внутренний относительный КПД т^ этих машин снижается.

Вследствие этого внутренний абсолютный КПД цикла

Rii = VfVoi (119)

Оказывается сравнительно малым.

Важно и то, что компрессор для сжатия влажного пара с малыми давлениями и большими удельными объемами представляет собой весьма громоздкое сооружение, не удобное для эксплуатации. При этом на привод компрессора затрачивается большая энергия. Почти 55% получаемой в паросиловом цикле механической энергии обратно тратится на привод компрессора.