Статистическое давление это. Определение динамического давления в воздуховоде

Системы отопления обязательно тестируют на устойчивость к давлению

Из этой статьи вы узнаете, что такое статическое и динамическое давление системы отопления, зачем оно нужно и чем отличается. Также будут рассмотрены причины его повышения и понижения и методы их устранения. Помимо этого, речь пойдет о том, каким давлением испытывают различные системы отопления и способы данной проверки.

Виды давления в отопительной системе

Выделяют два вида:

  • статистическое;
  • динамическое.

Что такое статическое давление системы отопления? Это то, которое создаётся под воздействием силы притяжения. Вода под собственным весом давит на стенки системы с силой пропорциональной высоте, на которую она поднимается. С 10 метров этот показатель равен 1 атмосфере. В статистических системах не задействуют нагнетатели потока, и теплоноситель циркулирует по трубам и радиаторам самотеком. Это открытые системы. Максимальное давление в открытой системе отопления составляет около 1,5 атмосферы. В современном строительстве такие методы практически не применяются, даже при монтаже автономных контуров загородных домов. Это связано с тем, что для такой схемы циркуляции надо применять трубы с большим диаметром. Это не эстетично и дорого.

Динамическое давление в системе отопления можно регулировать

Динамическое давление в закрытой системе отопления создается искусственным повышением скорости потока теплоносителя при помощи электрического насоса. Например, если речь идет о многоэтажках, или крупных магистралях. Хотя, теперь даже в частных домах при монтаже отопления используют насосы.

Важно! Речь идет об избыточном давлении без учета атмосферного.

Каждая из систем отопления имеет свой допустимый предел прочности. Иными словами, может выдержать разную нагрузку. Чтобы узнать какое рабочее давление в закрытой системе отопления, надо к статическому, создаваемому столбом воды, добавить динамическое, нагнетаемое насосами. Для правильной работы системы, показания манометра должны быть стабильными. Манометр – механический прибор, измеряющий силу, с которой вода движется в системе отопления. Он состоит из пружины, стрелки и шкалы. Манометры устанавливаются в ключевых местах. Благодаря им можно узнать какое рабочее давление в системе отопления, а также выявлять неисправности в трубопроводе во время диагностики.

Перепады давления

Чтобы компенсировать перепады, в контур встраивается дополнительное оборудование:

  1. расширительный бачок;
  2. клапан аварийного выброса теплоносителя;
  3. воздухоотводы.

Тестирование воздухом – испытательное давление системы отопления повышают до 1,5 бар, затем спускают до 1 бара и оставляют на пять минут. При этом потери не должны превышать 0,1 бар.

Тестирование водой – давление повышают не менее чем до 2 бар. Возможно и больше. Зависит от рабочего давления. Максимальное рабочее давление системы отопления надо умножить на 1,5. За пять минуть потери не должны превышать 0,2 бар.

Панельное

Холодное гидростатическое тестирование – 15 минут с давлением 10 бар, потери не больше 0,1 бара. Горячее тестирование – поднятие температуры в контуре до 60 градусов на семь часов.

Испытывают водой, нагнетая 2,5 бара. Дополнительно проверяют водонагреватели (3-4 бара) и насосные установки.

Тепловые сети

Допустимое давление в системе отопления постепенно повышается до уровня выше рабочего на 1,25, но не меньше 16 бар.

По результатам тестирования составляется акт, который является документом, подтверждающим заявленные в нем эксплуатационные характеристики. К ним, в частности, относиться рабочее давление.

В ламинарном потоке сумма статического и динамического давления остается постоянной. Эта сумма соответствует статическому давлению в покоящейся жидкости.

Сумма статического и динамического давления называется полным давлением потока. При увеличении скорости потока динамическая составляющая полного давления возрастает, а статическая уменьшается (см. рис.4). В покоящемся потоке динамическое давление равно нулю, а полное давление равно статическому.

р

р о

статическое

давление

динамическое

давление

ИЗМЕРЕНИЕ ДАВЛЕНИЯ В ПОТОКЕ

  • Статическое давление измеряется р ст

манометром, установленным

перпендикулярно направлению

потока (в простейшем случае –

открытым жидкостным манометром

  • Полное давление измеряется манометром, р полн

Установленням паралельно направлению

потока (трубка Пито)

разностью полного и статического

давления и измеряется комбинацией р дин

предыдущих приборов, которая называется

трубкой Прандтля.

ПРИМЕНЕНИЕ ЗАКОНА БЕРНУЛЛИ

В мореплавании.

Во время движения судов параллельными курсами при сближении в случае нарушения скоростного режима существует возможность столкновения. Почему? Обратимся к рис.4.9. На нем изображены два судна, движущиеся параллельными курсами

Рис.4.9

υ 1 υ 2 υ 1

р 1 р 2 р 1 υ 2 >υ 1

р 2 <р 1

в одном направлении. Каждое из них носом разрезает воду на два потока. Та вода, которая оказывается между судами, попадая в «узкость», вынуждена проскакивать по ней со скоростью υ 2 , бóльшей, чем скорость потока υ 1 с внешней стороны судов. Следовательно, согласно закону Бернулли, давление воды между судами р 1 окажется меньше давления воды р 2 с внешней стороны. При наличии разницы давлений движение осуществляется из зоны более высокого давления в зону более низкого давления – природа не терпит пустоты! – следовательно, оба судна устремятся друг к другу (направление указано стрелками). Если в данной ситуации будет нарушено соответствие между дистанцией сближения и скоростью хода, то существует опасность столкновения – так называемое «присасывание» судов. Если суда движутся параллельными, но встречными курсами, эффект «присасывания» тоже имеет место. Поэтому при сближении судов правила мореплавания требуют сбрасывания скорости хода до оптимального значения.

При движении судна по мелководью ситуация складывается аналогично (см. рис.4.10). Вода под днищем судна оказывается в «узкости», скорость потока

Рис.4.10

υ 1 ,p 1 υ 1 , p 1 υ 2 > υ 1

υ 2, р 2 р 2 < p 1

увеличивается, давление под судном уменьшается – судно как бы притягивается ко дну. Во избежание возможности сесть на мель, необходимо сбросить скорость хода, чтобы минимизировать этот эффект.

В авиации.

Знание и использование закона Бернулли позволило создать летательные аппараты

тяжелее воздуха – это самолеты, аэропланы, вертолеты, автожиры (малые легкие вертолеты). Дело в том, что сечение крыла или лопасти этих машин имеет так называемый аэродинамический профиль , вызывающий появление подъемной силы (см. рис.4.11). Достигается это следующим образом. Все дело в «каплевидной» форме аэродинамического профиля. Опыт показывает, что когда крыло помещено в поток воздуха, вблизи задней кромки крыла возникают вихри, вращающиеся в случае, изображенном на рис.4.11, против часовой стрелки. Вихри эти растут, отрываются от крыла и уносятся потоком. Остальная масса воздуха вблизи крыла получает при этом противоположное вращение – по часовой стрелке – образуя циркуляцию около крыла (на рис.4.11 эта циркуляция изображена пунктирной замкнутой линией). Наклдываясь на общий поток, циркуляция слегка тормозит поток воздуха под крылом и слегка ускоряет поток воздуха над крылом. Таким образом, над крылом образовывается зона более низкого, чем под крылом, давления, что и приводит к возникновению подъемной силы F п , направленной вертикально вверх. Кроме нее, в результате движения самолета на крыло

Рис.4.11

направление движения самолета

υ 2 , р 2 υ 2 > υ 1

действуют еще три силы: 1). Сила тяжести G , 2). Сила тяги двигателей самолета F т ,

3). Сила лобового сопротивления воздуха F с . При геометрическом сложении всех четырех сил получается равнодействующая сила F, которая и определяет направление движения самолета.

Чем больше скорость набегающего потока (а она зависит от силы тяги двигателей), тем больше скорость и подъемная сила, и сила лобового сопротивления. Эти силы зависят, кроме того, и от формы профиля крыла, и от угла, под которым поток набегает на крыло (так называемый угол атаки), а также от плотности набегающего потока: чем больше плотность, тем больше эти силы.

Профиль крыла выбирают так, чтобы оно давало возможно бóльшую подъемную силу при возможно меньшем лобовом сопротивлении. Теория возникновения подъемной силы крыла при обтекании потоком воздуха была дана основоположником теории авиации, основателем российской школы аэро- и гидродинамики Николаем Егоровичем Жуковским (1847-1921).

Самолеты, рассчитанные на полет с различной скоростью, имеют различные размеры крыльев. Медленно летящие транспортные самолеты должны иметь большую площадь крыльев, т.к. при малой скорости подъемная сила, приходящаяся на единицу площади крыла, невелика. Скоростные же самолеты получают достаточную подъемную силу и от крыльев малой площади.

Т.к. подъемная сила крыла уменьшается при уменьшении плотности воздуха, то для полета на большой высоте самолет должен двигаться с большей скоростью, чем вблизи земли.

Подъемная сила возникает и в том случае, когда крыло движется в воде. Это дает возможность строить суда на подводных крыльях. Корпус таких судов во время движения выходит из воды – это уменьшает сопротивление воды и позволяет достичь большой скорости хода. Т.к. плотность воды во много раз больше плотности воздуха, то можно получить достаточную подъемную силу подводного крыла при сравнительно малой его площади и умеренной скорости.

Существует тип летательных аппаратов тяжелее воздуха, для которого крылья не нужны. Это – вертолеты. Лопасти вертолета тоже имеют аэродинамический профиль. Винт создает вертикальную тягу независимо от того, движется вертолет или нет – поэтому при работе воздушных винтов вертолет может неподвижно висеть в воздухе или подниматься по вертикали. Для горизонтального перемещения вертолета необходимо создать горизонтальную тягу. Это достигается путем изменения угла наклона лопастей, что выполняется при помощи специального механизма во втулке винта. (Небольшой винт с горизонтальной осью на хвосте вертолета служит лишь для того, чтобы корпус вертолета не стал вращаться в сторону, обратную вращению большого винта.)

ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ г. СЕМЕЙ

Методическое пособие по теме:

Исследование реологических свойств биологических жидкостей.

Методы исследования кровообращения.

Реография.

Составитель: Преподаватель

Ковалева Л.В.

Основные вопросы темы:

  1. Уравнение Бернулли. Статическое и динамическое давления.
  2. Реологические свойства крови. Вязкость.
  3. Формула Ньютона.
  4. Число Рейнольдса.
  5. Ньютоновская и Неньютоновская жидкость
  6. Ламинарное течение.
  7. Турбулентное течение.
  8. Определение вязкости крови с помощью медицинского вискозиметра.
  9. Закон Пуазейля.
  10. Определение скорости кровотока.
  11. Полное сопротивление тканей организма. Физические основы реографии. Реоэнцефалография
  12. Физические основы баллистокардиографии.

Уравнение Бернулли. Статическое и динамическое давления.

Идеальной называется несжимаемая и не имеющая внутреннего трения, или вязкости; стационарным или установившимся называется течение, при котором скорости частиц жидкости в каждой точке потока со временем не изменяются. Установившееся течение характеризуют линиями тока - воображаемыми линиями, совпадающими с траекториями частиц. Часть потока жидкости, ограниченная со всех сторон линиями тока, образует трубку тока или струю. Выделим трубку тока настолько узкую, что скорости частиц V в любом ее сечении S, перпендикулярном оси трубки, можно считать одинаковыми по всему сечению. Тогда объем жидкости, протекающий через любое сечение трубки в единицу времени остается постоянным, так как движение частиц в жидкости происходит только вдоль оси трубки: . Это соотношение назы­вается условием неразрывности струи. Отсюда следует, что и для реальной жидкости при установившемся течении по трубе переменного сечения количество Qжидкости, проте­кающее в единицу времени через любое сечение трубы, остается по­стоянным (Q = const) и средние скорости течения в различных сече­ниях трубы обратно пропорциональны площадям этих сечений: и т. д.

Выделим в потоке идеальной жидкости трубку тока, а в ней - достаточно малый объем жидкости массой , который при тече­нии жидкости перемещается из положения А в положение В.

Из-за малости объема можно считать, что все частицы жидкости в нем находятся в равных условиях: в положе­нии А имеют давление скорость и находятся на высоте h 1 от нуле­вого уровня; в положении В - соот­ветственно . Сечения трубки тока соответственно S 1 и S 2 .

Жидкость, находящаяся под дав­лением, обладает внутренней потен­циальной энергией (энергией давле­ния), за счет которой она может совершать работу. Этаэнергия W p измеряется произведением давления на объем V жидкости: . В данном случае перемещение массы жидкости происходит под действием разности сил давления в се­чениях Si и S 2 . Совершаемая при этом работа А р равняется разности по­тенциальных энергий давления в точках . Эта работа расходуется на работу по преодолению действия силы тяжес­ти и на изменение кинетической энергии массы


Жидкости:

Следовательно, А р = A h + A D

Перегруппировав члены уравнения, получим

Положения А и В выбраны произвольно, поэтому можно утверждать, что в любом месте вдоль трубки тока сохраняется условие

разделив это уравнение на , получим

где - плотность жидкости.

Это и есть уравнение Бернулли. Все члены уравнения, как легко убедиться, имеют размерность давления и называются: статистическим: гидростатическим: - динамическим. Тогда уравнение Бернулли можно сформулировать так:

при стационарном течении идеальной жидкости полное давление равное сумме статического, гидростатического и динамического давлений, остается величиной постоянной в любом поперечном сечении потока.

Для горизонтальной трубки тока гидростатическое давление ос­тается постоянным и может быть отнесено в правую часть уравнения, которое при этом принимает вид

статистическое давление обусловливает потенциальную энергию жидкос­ти (энергию давления), динамическое давление - кинетическую.

Из этого уравнения следует вывод, называемый правилом Бернулли:

статическое давление невязкой жидкости при течении по горизон­тальной трубе возрастает там, где скорость ее уменьшается, и на­оборот.

В текущей жидкости различают статическое давление и динамическое давление . Причиной статического давления, как и в случае неподвижной жидкости, является сжатие жидкости. Статическое давление проявляется в напоре на стенку трубы, по которой течёт жидкость.

Динамическое давление обусловливается скоростью течения жидкости. Чтобы обнаружить это давление, надо затормозить жидкость, и тогда оно, как и. статическое давление, проявится в виде напора.

Сумма статического и динамического давлений называется полным давлением.

В покоящейся жидкости динамическое давление равно нулю, следовательно, статическое давление равно полному давлению и может быть измерено любым манометром.

Измерение давления в движущейся жидкости сопряжено с целым рядом трудностей. Дело в том, что манометр, погружённый в движущуюся жидкость, изменяет скорость движения жидкости в том месте, где он находится. При этом, конечно, изменяется и величина измеряемого давления. Чтобы манометр, погружённый в жидкость, совсем не изменял скорости жидкости, он должен двигаться вместе с жидкостью. Однако измерять таким путём давление внутри жидкости крайне неудобно. Это затруднение обходят, придавая трубке, соединённой с манометром, обтекаемую форму, при которой она почти не изменяет скорости движения жидкости. Практически для измерения давлений внутри движущейся жидкости или газа применяют узкие манометрические трубки.

Статическое давление измеряется с помощью манометрической трубки, плоскость отверстия которой расположена параллельно линиям тока. Если жидкость в трубе находится под давлением, то в манометрической трубке жидкость поднимается на некоторую высоту, соответствующую статическому давлению в данном месте трубы.

Полное давление измеряют трубкой, плоскость отверстия которой расположена перпендикулярно линиям тока. Такой прибор называется трубкой Пито. Попав в отверстие трубки Пито, жидкость останавливается. Высота столба жидкости (h полн) в манометрической трубке будет соответствовать полному давлению жидкости в данном месте трубы.

В дальнейшем нас будет интересовать только статическое давление, которое мы будем называть просто давлением внутри движущейся жидкости или газа.?

Если измерить статическое давление в движущейся жидкости в различных частях трубы переменного сечения, то окажется, что в узкой части трубы оно меньше, чем в широкой её части.

Но скорости течения жидкости обратно пропорциональны площадям сечения трубы; следовательно, давление в движущейся жидкости зависит от скорости её течения.

В местах, где жидкость движется быстрее (узкие места трубы), давление меньше, чем там, где эта жидкость движется медленнее (широкие места трубы) .

Этот факт можно объяснить на основе общих законов механики.

Допустим, что жидкость переходит из широкой части трубки в узкую. При этом частицы жидкости увеличивают скорости, т. е. движутся с ускорениями в направлении движения. Пренебрегая трением, на основе второго закона Ньютона можно утверждать, что равнодействующая сил, действующих на каждую частицу жидкости, также направлена в сторону движения жидкости. Но эта равнодействующая сила создаётся силами давления , которые действуют на каждую данную частицу со стороны окружающих её частиц жидкости, и направлена вперёд, по направлению движения жидкости. Значит, сзади на частицу действует большее давление, чем спереди. Следовательно, как показывает и опыт, давление в широкой части трубки больше, чем в узкой.

Если жидкость течёт из узкой в широкую часть трубки, то, очевидно, в этом случае частицы жидкости тормозятся. Равнодействующая сил, действующих на каждую частицу жидкости со стороны окружающих её частиц, направлена в сторону, противоположную движению. Эта равнодействующая определяется разностью давлений в узком и широком каналах. Следовательно, частица жидкости, переходя из узкой в широкую часть трубки, движется из мест с меньшим давлением в места с большим давлением.

Итак, при стационарном движении в местах сужения каналов давление жидкости понижено, в местах расширения – повышено.

Скорости течения жидкости принято изображать густотой расположения линий тока. Поэтому в тех частях стационарного потока жидкости, где давление меньше, линии тока должны быть расположены гуще, и, наоборот, где давление больше, линии тока расположены реже. То же относится и к изображению потока газа.

Лекция 2. Потери давления в воздуховодах

План лекции. Массовый и объемный потоки воздуха. Закон Бернулли. Потери давления в горизонтальном и вертикальном воздуховодах: коэффициент гидравлического сопротивления, динамический коэффициент, число Рейнольдса. Потери давления в отводах, местных сопротивлениях, на разгон пылевоздушной смеси. Потери давления в высоконапорной сети. Мощность пневмотранспортной системы.

2. Пневматические параметры течения воздуха
2.1. Параметры воздушного потока

Под действием вентилятора в трубопроводе создается воздушный поток. Важными параметрами воздушного потока являются его скорость, давление, плотность, массовый и объемный расходы воздуха. Расходы воздуха объемный Q , м 3 /с, и массовый М , кг/с, связаны между собой следующим образом:

;
, (3)

где F – площадь поперечного сечения трубы, м 2 ;

v – скорость воздушного потока в заданном сечении, м/с;

ρ – плотность воздуха, кг/м 3 .

Давление в воздушном потоке различают статическое, динамическое и полное.

Статическим давлением Р ст принято называть давление частиц движущегося воздуха друг на друга и на стенки трубопровода. Статическое давление отражает потенциальную энергию воздушного потока в том сечении трубы, в котором оно измерено.

Динамическое давление воздушного потока Р дин , Па, характеризует его кинетическую энергию в сечении трубы, где оно измерено:

.

Полное давление воздушного потока определяет всю его энергию и равно сумме статического и динамического давлений, измеренных в одном и том же сечении трубы, Па:

Р = Р ст + Р д .

Отсчет давлений можно вести либо от абсолютного вакуума, либо относительно атмосферного давления. Если давление отсчитывается от нуля (абсолютного вакуума), то оно называется абсолютным Р . Если давление измерять относительно давления атмосферы, то это будет относительное давление Н .

Н = Н ст + Р д .

Атмосферное давление равно разности полных давлений абсолютного и относительного

Р атм = Р Н .

Давление воздуха измеряют Па (Н/м 2), мм водяного столба или мм ртутного столба:

1 мм вод. ст. = 9,81 Па; 1 мм рт. ст. = 133,322 Па. Нормальное состояние атмосферного воздуха соответствует следующим условиям: давление 101325 Па (760 мм рт. ст.) и температура 273К.

Плотность воздуха есть масса единицы объема воздуха. По уравнению Клайперона плотность чистого воздуха при температуре 20ºС

кг/м 3 .

где R – газовая постоянная, равная для воздуха 286,7 Дж/(кг  К); T – температура по шкале Кельвина.

Уравнение Бернулли. По условию неразрывности воздушного потока расход воздуха постоянен для любого сечения трубы. Для сечений 1, 2 и 3 (рис. 6) это условие можно записать так:

;

При изменении давления воздуха в пределах до 5000 Па плотность его остается практически постоянной. В связи с этим

;

Q 1 = Q 2 = Q 3 .

Изменение давления воздушного потока по длине трубы подчиняется закону Бернулли. Для сечений 1, 2 можно написать

где р 1,2 – потери давления, вызванные сопротивлением потока о стенки трубы на участке между сечениями 1 и 2, Па.

С уменьшением площади поперечного сечения 2 трубы скорость воздуха в этом сечении увеличится, так что объемный расход останется неизменным. Но с увеличением v 2 возрастет динамическое давление потока. Для того, чтобы равенство (5) выполнялось, статическое давление должно упасть ровно на столько, на сколько увеличится динамическое давление.

При увеличении площади сечения динамическое давление в сечении упадет, а статическое ровно на столько же увеличится. Полное же давление в сечении останется величиной неизменной.

2.2. Потери давления в горизонтальном воздуховоде

Потеря давления на трение пылевоздушного потока в прямом воздуховоде с учетом концентрации смеси, определяется по формуле Дарси-Вейсбаха, Па

, (6)

где l – длина прямолинейного участка трубопровода, м;

 - коэффициент гидравлического сопротивления (трения);

d

р дин – динамическое давление, исчисляемое по средней скорости воздуха и его плотности, Па;

К – комплексный коэффициент; для трасс с частыми поворотами К = 1,4; для трасс прямолинейных с небольшим количеством поворотов
, где d – диаметр трубопровода, м;

К тм – коэффициент, учитывающий вид транспортируемого материала, значения которого приведены ниже:

Коэффициент гидравлического сопротивления  в инженерных расчетах определяют по формуле А.Д. Альтшуля


, (7)

где К э – абсолютная эквивалентная шероховатость поверхности, К э = (0,0001… 0,00015) м;

d внутренний диаметр трубы, м;

R е – число Рейнольдса.

Число Рейнольдса для воздуха

, (8)

где v – средняя скорость воздуха в трубе, м/с;

d – диаметр трубы, м;

 - плотность воздуха, кг/м 3 ;

1 – коэффициент динамической вязкости, Нс/м 2 ;

Значение динамического коэффициента вязкости для воздуха находят по формуле Милликена, Нс/м2

 1 = 17,11845  10 -6 + 49,3443  10 -9 t , (9)

где t – температура воздуха, С.

При t = 16 С  1 = 17,11845  10 -6 + 49,3443  10 -9 16 =17,910 -6 .

2.3. Потери давления в вертикальном воздуховоде

Потери давления при перемещении аэросмеси в вертикальном трубопроводе, Па:

, (10)

где - плотность воздуха, = 1,2 кг/м 3 ;

g = 9,81 м/с 2 ;

h – высота подъема транспортируемого материала, м.

При расчете аспирационных систем, в которых концентрация аэросмеси  0,2 кг/кг значение р под учитывают только при h  10 м. Для наклонного трубопровода h = l sin, где l – длина наклонного участка, м;  - угол наклона трубопровода.

2.4. Потери давления в отводах

В зависимости от ориентации отвода (поворота воздуховода на некоторый угол) в пространстве различают два вида отводов: вертикальные и горизонтальные.

Вертикальные отводы обозначают начальными буквами слов, отвечающих на вопросы по схеме: из какого трубопровода, куда и в какой трубопровод направляется аэросмесь. Различают следующие отводы:

– Г-ВВ – транспортируемый материал движется из горизонтального участка вверх в вертикальный участок трубопровода;

– Г-НВ – то же из горизонтального вниз в вертикальный участок;

– ВВ-Г – то же из вертикального вверх в горизонтальный;

– ВН-Г – то же из вертикального вниз в горизонтальный.

Горизонтальные отводы бывают только одного типа Г-Г.

В практике инженерных расчетов потерю давления в отводе сети находят по следующим формулам.

При значениях расходной концентрации  0,2 кг/кг

где
- сумма коэффициентов местного сопротивления отводов ветви (табл. 3) при R / d = 2, где R – радиус поворота осевой линии отвода; d – диаметр трубопровода; динамическое давление воздушного потока .

При значениях   0,2 кг/кг

где
- сумма условных коэффициентов, учитывающих потери давления на поворот и разгон материала за отводом.

Значения о усл находят по величине табличных т (табл. 4) с учетом коэффициента на угол поворота К п

о усл = т К п . (13)

Поправочные коэффициенты К п берут в зависимости от угла поворота отводов :

К п

Таблица 3

Коэффициенты местного сопротивления отводов о при R / d = 2

Конструкция отводов

Угол поворота, 

Отводы гнутые, штампованные, сварные из 5 звеньев и 2 стаканов