Сильфонные компенсаторы для тепловых сетей. Опыт применения осевых сильфонных компенсаторов в тепловых сетях

КСО (ОПН) - сильфонный компенсатор осевого типа является самым базовым во всей линейке компенсаторов нашего производства. Простая и надежная конструкция представляет собой сильфон и два патрубка под приварку. Предназначен осевой компенсатор для компенсации осевых смещений на трубопроводе .

Наши компенсаторы уникальны - даже однослойный сильфон выдерживает нагрузки до Ру 10,3 (103 кгс/см).

Надёжность гарантируем! (Акт испытаний на сайте, нашего постоянного клиента!)

КСО.Ф - к омпенсатор сильфонный осевой фланцевый , который оснащен приварными фланцами с обоих сторон, либо приварным с одной стороны и поворотным фланцам с другой стороны. Как и стандартный КСО, этот компенсатор предназначен для компенсации осевых смещений трубопроводной системы. Главная рабочая часть этого устройства сильфон, который способен растягиваться и сжиматься под воздействием нагрузок. Именно гибкость сильфона позволяет устройству эффективно работать.

Наши компенсаторы уникальны - даже однослойный сильфон выдерживает нагрузки до Ру 13.0 мПА (130 кгс/см 2)! (Акт гидравлических испытаний на сайте)

Продукция нашего производства, отличная альтернатива других производителей вписанных в проект!

Отличная возможность заменить Резиновые или Линзовые или Сальниковые компенсаторы!

КСО.ВД - сильфонные компенсаторы высокого давления , которые устанавливаются на трубопроводные системы с высоким давлением. Как и у всех компенсаторов, основная задача КСО.ВД компенсировать температурные расширения трубопровода и деформации, возникающие от внешних факторов. Устройство так же помогает бороться с вибрациями в трубопроводной системе, восполняет небольшие несоосности, которые были допущены при монтаже магистрали.

Наши сильфонныекомпенсаторы уникальны - даже обычный двухслойный сильфон выдерживает нагрузки до 170 атмосфер!

Изготавливаем компенсаторы на высокое давление, свыше 300 атмосфер.

СКУ.М, 2 СКУ.М - сильфонный компенсатор с тепловой изоляцией из минеральной ваты. Такие компенсаторы применяются на тепловых магистралях, причем как подземного, так и надземного типа. Давление в таких системах обычно составляет от 1,0 мПА (10 кгс/см 2 ) до 2 ,5 мПА (25 кгс/см 2 ) , а в роли теплоносителя может выступать вода, пар, и другие рабочие среды! Чтобы компенсировать температурные расширения, которые неминуемо возникнут при транспортировке теплоносителя, используются компенсаторы СКУ.М.

Наши компенсаторы уникальны, их используют на предприятиях с повышенным входным контролем качества!

Акт о проведении приёмочного гидравлического испытания на прочность и герметичность, на сайте!

Отзывы о наших компенсаторах установленных в Росссии и РБ. Казахстан.

ОПКР,2ОПКР - осевые сильфонные компенсаторы , оборудованные усиленным двойным (телескопическим) кожухом, в базовой версии изготавливаются с патрубками под приварку. Компенсаторы ОПКР применяются в трубопроводных системах для компенсации деформаций, возникающих в следствие температурных изменений в трубе, а так же внешних факторов, влияющих на систему.

СКУ.ППУ - в пенополиуретановой изоляции применяются на трубопроводах для компенсации температурных деформаций системы. Компенсатор типа СКУ, строятся на базе осевых компенсаторов СКУ с одним или двумя сильфонами (2СКУ.ППУ ). Однако помимо сильфона и патрубков имеют пенополиуретановую изоляцию, позволяющею обеспечить защиту сильфона и уменьшить теплопотери трубопроводной системы.

Наши компенсаторы уникальны - даже обычный двухслойный сильфон выдерживает нагрузки до (17,0 мПА) 170 кгс/см 2 .

Срок службы наших компенсаторов 30 лет. Гарантия от 5 лет!

СКУ.ППМ, 2СКУ.ППМ - сильфонное компенсационное устройство с пенополиминеральной тепловой изоляцией. Как и аналоги с изоляцией из пенополиуретана (СКУ.ППУ) эти компенсаторы применяются на магистральных трубопроводах в системах промышленного и коммунального отопления, снабжения горячей и холодной водой.

Наши компенсаторы уникальны - все изделия выдерживают испытания избыточным давлением 17,0 мПА (170 кгс/см 2).

Продукция нашего производства, отличная альтернатива других производителей вписанных в проект!

ССК - стартовый сильфонный компенсатор с патрубками под приварку. Стартовые компенсаторы применяются единожды, во время пуско-наладочных работ на трубопроводе, когда в него подается рабочая среда. Стартовый компенсатор своим осевым смещением компенсирует деформацию системы из-за нагрева на начальном этапе, помогая наладить работу магистрали, после чего его кожухи заваривают и он остается элементом системы, обычной трубой.

Компнсаторы нашего производства, отличная альтернатива других производителей вписанных в проект!

Сильфонный компенсатор представляет одну из разновидностей устройств, препятствующих возникновению повышенного механического напряжения элементов трубопроводов вследствие температурных изменений их линейных размеров, вибраций и гидроударов. Компенсатор является неотъемлемой частью трубопроводных систем, транспортирующих среду с повышенной температурой и давлением. Выбор мест установки компенсаторов и их типов производится на стадии проектирования сети, по результатам расчета режимов ее работы.

В основе конструкции находится сильфон – тонкостенная гофрированная оболочка, способная выдерживать многократные осевые и угловые деформации.

Интересный факт. Возникновению термина «Сильфон» мы обязаны Уэстону Фултону, метеорологу университета Теннесси. В 1902 году, сконструировав термодинамический прибор, он использовал в нем известную ныне конструкцию, назвав ее «Sylphon», в честь древнескандинавской богини погоды. После этого возникло множество патентов на изобретения, использующие сильфон в самых разных областях техники.

Принцип действия

Работа трубопроводов систем теплоснабжения сопряжена с температурными колебаниями, обусловленными внешними погодными условиями и изменением режима тепловой сети. В результате колебания температуры, стальные трубы изменяют линейные размеры в осевом направлении (в длину) и в поперечном (в ширину).

Вследствие того, что трубопровод является жесткой сварной конструкцией, тепловое расширение и сжатие отдельных его участков вызывает возникновение значительных механических усилий по всей его длине. В зависимости от пространственной конфигурации сети, в отдельных местах труба может испытывать нагрузку на сжатие, растяжение, изгиб, сдвиг или кручение.

Кроме температурного фактора воздействия, трубопроводы испытывают вибрационные нагрузки, вызываемые работой турбинного, насосного и другого оборудования, имеющего вращающиеся элементы. При отсутствии компенсирования этих явлений, деформация отдельных участков может переходить из упругой области в пластичную зону. В результате этого, в наиболее нагруженных участках накапливаются усталостные изменения структуры металла, что приводит к быстрому его разрушению и разгерметизации трубопровода.

Сильфонный компенсатор, врезанный в трубопровод, способен испытывать значительные упругие деформации благодаря гофрированной конструкции. Усилия, вызывающие расширение и сжатие сильфона, значительно меньше, чем у основной трубы, по этой причине, наибольшие линейные перемещения происходят именно в компенсаторе. Трубы системы, установленные на скользящие опоры, свободно перемещаются по ним в осевом направлении, деформируя компенсатор. Это защищает трубопровод от опасных перегрузок.

На рисунке 1 продемонстрированы различные виды деформации сильфонного элемента компенсатора, имеющие место при воздействии усилий, возникающих в трубных системах.

а – Исходное состояние элемента в ненагруженном положении,

б – Уменьшение длины элемента в результате приложения внешнего сжимающего усилия,

в – Удлинение сильфона вследствие усилия, направленного на растяжение,

г – Поворот оси сильфона на некоторый угол, вызванный нагрузкой на изгиб,

д – Сдвиговая деформация, вызванная параллельным смещением осей стыкуемых труб.

Технические параметры

К основным техническим характеристикам данного вида компенсаторов относятся:

Рабочий ход, то есть рабочая величина осевой или угловой упругой деформации.

Внутренний диаметр или условный проход.

Максимальное рабочее давление.

Допустимая температура эксплуатации.

Среда, для работы с которой предназначено устройство.

Скорость перемещения среды в трубной системе.

Способ соединения с трубопроводом (фланцевый или под приварку).

Основные преимущества

Широкое применение этих устройств обусловлено целым рядом их преимуществ:

Небольшие габаритные размеры, позволяющие монтировать их на любых участках трубопроводов, независимо от варианта прокладки.

Простое обслуживание, отсутствие необходимости оборудовать специальные камеры.

Продолжительный срок службы, равный периоду эксплуатации трубопровода.

Область применения

Сильфонные компенсаторы используются в таких областях, как энергетика, металлургия, нефтепереработка, коммунальное хозяйство. Их применение преследует следующие цели:

Компенсирование температурных расширений элементов трубопроводов.

Предотвращение механического разрушения труб вследствие деформации.

Компенсирование ошибок, допущенных в процессе монтажа и приведших к несоосности трубных систем.

Нейтрализация вибрационных нагрузок, источником которых служит работающее оборудование и поток транспортируемого энергоносителя.

Обеспечение герметичности транспортных трубопроводов.

Выполнение соединений труб различного типа и диаметра

Технология изготовления

Самой ответственной частью конструкции компенсатора является сильфон. Материалом для его изготовления служит нержавеющая сталь, придающая изделию высокую коррозионную и температурную стойкость. Сначала тонкие листы стали свариваются продольно, затем на полученном цилиндре формируются гофры. Для обеспечения максимальной гибкости, стенки сильфона делают многослойными. Такая конструкция увеличивает сопротивление давлению, сохраняя при этом легкость деформирования.

Остальные элементы конструкции компенсатора, присоединительная и ограничительная арматура, выполняются из углеродистых сталей.

Разновидности

В зависимости от вида нагрузки, возникающей в месте установки компенсатора, выбирается его вид, рассчитанный на определенный характер деформации упругого элемента. Различают сильфонные компенсаторы следующих видов:

Осевой.

Угловой.

Карданный.

Разгруженный сдвиговый.

Стартовый.

Осевой компенсатор (КСО) устанавливается на прямолинейные участки трубопроводов между двумя неподвижными опорами, промежуточными или концевыми. Он предназначен для компенсирования деформации в осевом направлении.

Осевой компенсатор обладает высокой надежностью. Все виды отказов данного устройства связаны с неправильным его применением или ошибками, допущенными при монтаже:

Нарушение инструкции при размещении компенсатора.

Использование компенсатора в условиях появления несоосности, и как следствие, возникновение повышенных поперечных нагрузок.

Попадание посторонних предметов или грунта в пространство между гофрами.

Низкое качество направляющих опор трубопровода, вызывающее просадку и возникновение осевых сдвигов.

Коррозия сильфонных оболочек, вызванная повышенным содержанием хлоридов в перекачиваемой среде.

Угловой компенсатор используются для осуществления поворотных перемещений осей трубопроводов. Как правило, он устанавливается в местах изгиба трубопровода или соединения разных трубопроводов под углом. Благодаря характеру деформации компенсатора, его также называют поворотным.

Данный вид компенсаторов оборудуется шарниром (фото 3), позволяющим совершать перемещения только в одной плоскости. Такой шарнир служит защитой сильфона от скручивания. Конструкция углового компенсатора не позволяет ему совершать осевые перемещения.

Карданный компенсатор совершает угловые перемещения в любой плоскости.

В его конструкцию входят два шарнира в перпендикулярных плоскостях. Этот компенсатор также способен деформироваться в осевом направлении, что обуславливает его широкое применение.

Сдвиговый компенсатор устанавливается в тех местах трубопроводов, где возможно возникновение усилий, направленных на взаимный сдвиг осей отдельных участков трассы. Одно из типовых применений этого вида компенсаторов – в местах ввода трубопроводов в здания. Эта мера позволяет избежать повреждения труб в результате неизбежной осадки строительных конструкций. С помощью данного компенсатора также возможно соединение участков сети, построенных с взаимным отклонением осей, то есть, компенсирование ошибок монтажа труб.

Чаще всего, устройства этого типа имеют два сильфонных элемента, разделенных промежуточной трубой, поэтому называются двухсекционными.

Стартовый компенсатор по конструкции является осевым. Отличие заключается в том, что сильфон покрыт снаружи кожухом, состоящим из двух половин. При осевой деформации, части кожуха движутся друг относительно друга.

Монтаж стартового компенсатора в предизолированный ППУ трубопровод происходит следующим образом. Ненагруженный компенсатор врезается в трубу. Труба заполняется водой, имеющей температуру 50% от рабочей величины. При этом, температурное расширение труб вызывает осевое сжатие сильфона компенсатора. Температуру воды поддерживают постоянной в течение суток. После этого, две половины кожуха деформированного компенсатора сваривают между собой. Затем соединяют проводники сигнальной системы изолированных труб, после чего корпус стартового компенсатора покрывается изоляцией. Такая процедура проделывается на всех прямолинейных участках между опорами.

При применении стартового компенсатора теплотрасса эксплуатируется в состоянии предварительного напряжения. Такой способ монтажа имеет ряд недостатков:

Монтаж может быть закончен только после начала отопительного сезона.

При производстве ремонта трубопровода, стартовый компенсатор необходимо менять.

Заключение

Использование компенсаторов является основным решением в мировой практике проектирования различных трубных систем. Сильфонные компенсаторы занимают одно из ведущих мест в ряду устройств аналогичного назначения. Их применение относится к наиболее эффективным методам борьбы с последствиями деформации в трубопроводных системах.

Сильфонные компенсирующие устройства нивелируют напряжения, возникающие в трубопроводе при смене температуры транспортируемой среды. Они используются на теплотрассах промышленного и общего назначения.

Фиксация сильфонных компенсаторов для тепловых сетей осуществляется между неподвижными опорами. Устройства крепятся посредством сварки. При проведении монтажных работ учитывается соосность трубопровода. Наличие отклонений - повод для проведения дополнительных мероприятий.

При прокладке тепловых сетей используются следующие компенсаторы:

  • Компенсаторы в ППУ изоляции

Компенсаторы СКУ.ППУ и СКУ.ППМ имеют дополнительную теплоизоляцию. В первом случае используется пенополиуретан, во втором - пенополиминеральный состав. Изделия устойчивы к перепадам температур, просты в монтаже. Зазоры, образующиеся при установке компенсаторов, изолируются посредством защитной скорлупы.

Компенсационные устройства СКУ.М и ОПКР не имеют собственной теплоизоляции. Для снижения тепловых потерь допускается использование минеральной ваты, пенобетона, ППУ скорлупы.

Купить компенсаторы для тепловых систем

Приобрести качественные сетей поможет компания «КОМПЕНС». Мы предлагаем продукцию собственного производства . Изделия отличаются длительным сроком службы и простотой обслуживания. В наличии решения для теплотрасс диаметром 57…1420 мм. Компенсаторы изготавливаются из отечественной стали. Каждое изделие проверяется сотрудниками ОТК.

Сотрудничество с компанией «КОМПЕНС» - это:

  • Возможность купить качественные изделия . При производстве продукции используется высокоточное оборудование. Изделия соответствуют действующим отраслевым стандартам. На все компенсаторы распространяется гарантия.
  • Отсутствие наценок и переплат . Товары реализуются напрямую с завода . Компания «КОМПЕНС» не сотрудничает с посредническими организациями. Вы получаете изделия по ценам производителя.
  • Качественное обслуживание . Менеджеры «КОМПЕНС» - опытные специалисты. Они порекомендуют сильфонные компенсаторы для тепловых сетей, отвечающие требованиям покупателя. Клиенты «КОМПЕНС» получают консультации по любым интересующим вопросам.
  • Своевременная доставка . Продукция отправляется со склада компании. Заказчик получает компенсаторы строго в обозначенный срок.

Подробную информацию о реализуемых товарах содержит сайт «КОМПЕНС». В нем представлены характеристики сильфонных компенсаторов, обозначены особенности их эксплуатации и монтажа.

Компания «КОМПЕНС» сотрудничает с коммерческими и государственными организациями. Принимаются заявки от подрядчиков, обслуживающих компаний, перерабатывающих и добывающих предприятий. При покупке крупной партии продукции предоставляется скидка.

Для оформления заявки свяжитесь с менеджерами «КОМПЕНС», либо воспользуйтесь функционалом нашего интернет-магазина.

1.1. Изделия допускается применять в районах строительства с расчетной наружной температурой для проектирования систем отопления не ниже минус 40°С. Сейсмичность районов строительствам не более девяти баллов по шкале Рихтера.

1.2. Изделия допускается применять при содержании хлоридов в сетевой воде не более 250 мг/кг.

1.3. Изделия должны устанавливаться на прямолинейных участках трубопроводов, ограниченных неподвижными опорами. Между неподвижными опорами допускается размещать только одно изделие.

Допускается отклонение от прямолинейности в плане и профиле с обязательной установкой направляющих опор в тех же местах не менее двух перед каждым компенсирующим устройством.

1.4. Способ присоединения к трубопроводу - сварка.

1.5. При любых способах прокладки трубопроводов, кроме подземного бесканального, установку компенсирующих устройств следует предусматривать, как правило, у одной из неподвижных опор.

1.6. На бесканальных подземных тепловых сетях размещение изделия должно осуществляться в середине участка трубопровода, ограниченного неподвижными опорами.

1.7. До и после компенсирующего устройства необходимо устанавливать направляющие опоры, исключающие перемещение трубопроводов в радиальном направлении.

При бесканальной прокладке трубопровода установка направляющих опор не требуется.

Примеры схем размещения сильфонного компенсирующего устройства, направляющих и неподвижных опор приведены на рисунке:

6.8. На участках трубопроводов с сильфонными компенсирующими устройствами не допускается применение подвесных опор.

6.9. При выборе неподвижных опор должны учитываться следующие факторы:

Распорное усилие компенсатора;

Усилие жесткости компенсатора;

Трение в направляющих и скользящих опорах;

Величина центробежной силы, возникающей при перегибе трубопровода.

Расчет нагрузок на концевые и промежуточные неподвижные опоры при различных способах установки сильфонных компенсирующих устройств выполняется на этапе проектирования тепловой сети и приводится в специальной литературе.

6.10. Максимальное расстояние между неподвижными опорами трубопровода определяется по формуле:

где 0,9- коэффициент запаса, учитывающий неточности расчета и погреш-

ности монтажа;

Компенсирующая способность компенсатора, мм

a - средний коэффициент линейного расширения трубной стали при на

греве от 0°С до t°С, мм/м°С;

t - расчетная температура сетевой воды в подающем трубопроводе, °С;

t РО -расчетная температура наружного воздуха для проектирования систем

отопления, принимаемая равной средней температуре воздуха наибо-

лее холодной пятидневки по главе СНиП «Строительная климатология

и геофизика», °С.

1.8. Изделия не требуют обслуживания в процессе эксплуатации и относятся к классу неремонтируемых изделий, для них не требуется сооружения специальных камер, а при наземной прокладке - площадок для обслуживания.

Указания по монтажу.

2.1. Монтаж изделий производится в соответствии с проектом трубопровода, выполненным проектной организацией.

2.2. Перед монтажом изделия должны быть проверены на соответствие их технических характеристик проекту тепловой сети, а также на отсутствие механических повреждений.

2.3. При перемещении компенсирующих устройств в период монтажа должны быть приняты меры, предохраняющие изделие от толчков, ударов и исключающие загрязнение или затопление грунтовыми водами его внутренней полости.

2.4. При выполнении сварочных работе торцы изоляции компенсирующего устройства следует защищать жестяными разъемными экранами толщиной 0,8…1 мм для предупреждения ее возгорания.

Монтаж изделий разрешается производить при температуре воздуха не ниже минус 30°С.

2.5. Перед приваркой изделия к трубопроводу проверяются отклонения соединений изделия с трубопроводом, которые не должны превышать следующих значений: допуск соосности патрубков - 2 мм;

допуск параллельности торцов присоединительных патрубков и присоединяемых труб - 3 мм.

Максимальный сварочный зазор между патрубком и трубопроводом - 2 мм.

2.6. Изделие следует устанавливать на теплопроводах так, чтобы направление стрелки (при ее наличии) на корпусе компенсирующего устройства совпадало с направлением движения теплоносителя.

2.7. Изделия монтируются на трубопроводе с предварительной растяжкой.

Длина компенсатора при монтаже Lмонт., мм определяется по формуле:

L строит. - строительная длина компенсатора в состоянии поставки, мм;

Компенсирующая способность компенсатора, мм;

A - коэффициент линейного расширения трубной стали, приме-

няемый 0,012 мм/м °С;

t наим . - наименьшая температура воздуха при эксплуатации, °С;

L - длина участка компенсатора между неподвижными опорами,

на котором монтируется компенсатор, м.

Установку монтажной длины компенсирующего устройства производит монтажная организация.

Участки трубопровода до и после компенсирующего устройства должны быть смонтированы и закреплены в неподвижных опорах таким образом, чтобы расстояние между концами труб в месте установки изделия соответствовало монтажной длине L монт. при температуре окружающего воздуха момента закрепления трубопровода во второй неподвижной опоре; температура окружающего воздуха и расстояние между концами закрепленных труб должны быть зафиксированы актом;

Компенсирующее устройство приваривается к одному из участков трубопровода;

На свободный присоединительный патрубок изделия и свободный конец трубопровода устанавливается универсальное монтажное приспособление, с помощью которого компенсатор изделия растягивают до стыка с трубопроводом, и стык заваривают;

С изделия снимают монтажное приспособление.

При растяжении компенсатора необходимо обеспечить одинаковые перемещения присоединительных патрубков относительно торцов изделия.

При невозможности установки изделия в середине прямолинейного участка теплопровода между неподвижными опорами допускается его установка в любом месте прямолинейного участка теплопровода. Для этого при растяжении компенсатора необходимо обеспечить перемещения присоединительных патрубков относительно торцов компенсирующего устройства обратно пропорциональными длинами участков теплопровода между изделием и неподвижными опорами.

2.9. Соединение проводников-индикаторов изделия с общей сигнальной системой необходимо производить после окончания сварочных работ перед изоляцией стыков присоединительных патрубков с теплопроводом. Проводники-индикаторы нигде не должны касаться металла труб.

сильфонное компенсирующее устройство
концевая неподвижная опора

Существует множество типов устройств, которые отличаются по параметрам и конструктивным элементам. Особенность указанных моделей заключается в том, что они способны выдержать большую температуру. Для того чтобы детально разобраться в указанном вопросе, рекомендуется ознакомиться с типами компенсаторов.

Виды устройств

По конструкции выделяют осевые и фланцевые сильфонные компенсаторы для ГОСТ Р 50671-94. Существуют модели низкого и высокого давления. Фланцевые устройства делятся на сдвиговые и угловые модели. В отдельную категорию выделены карданные и блочные модификации.

Устройства низкого давления

Модели низкого давления активно применяются в Сталь в данном случае используется разных маркировок. Если рассматривать модификации серии ОФН, у них имеется широкий выход. Показатель осевого хода в среднем составляет 80 мм. Коэффициент жесткости у них невысокий. Максимальная допустимая температура компенсаторов указанного типа находится на уровне -10 градусов.

Также надо отметить, что существуют модификации с отверстиями. Они подходят для труб диаметром от 3 см. Коэффициент жесткости у них в среднем равняется 300 Н. Масса обычной модели составляет 10 кг. Если рассматривать компенсатор КСО, у него предусмотрено четыре отверстия. Выход в данном случае имеется шириною в 80 мм. Предельное давление составляет 1.2 бара.

Модели высокого давления

Сильфонные компенсаторы для тепловых сетей высокого давления производятся только из закаленной стали. Минимальная допустимая температура компенсаторов равняется не более -20 градусов. Также стоит отметить, что существуют модификации с высоким осевым ходом. Большинство устройств делается с широким выходом. Отверстия могут располагаться на большом расстоянии от арматуры.

В среднем ширина входного отверстия равняется 70 мм. Показатель жесткости у моделей стартует от 400 Н. При этом параметр давления на выходе равняется примерно 2.5 бара. Если рассматривать компенсатор КСО, у него предусмотрено пять отверстий. Параметр осевого хода располагается на уровне 40 мм. Масса модели составляет ровно 10 кг. Сталь в данном случае применяется с маркировкой 12Х. Максимальная допустимая температура указанного компенсатора составляет 430 градусов.

Осевые модели

Компенсатор сильфонный (осевой) делается с длинным держателем. Стойки у модификаций производятся с широким выходом. Модели замечательно подходят для Сталь в устройствах применяется разных типов. Современные модели производятся с отверстиями. Показатель предельного давления у компенсаторов равняется не менее 4 бар. Вход, как правило, предусмотрен на 55 мм. Коэффициент жесткости в среднем равняется 340 Н. Также стоит отметить, что у моделей высокая допустимая температура. Если говорить про минусы, то внимания заслуживает тот факт, что устройства много весят. Также социалисты отметают, что модели не могут использоваться для алюминиевых труб.

Сила сжатия в данном случае сильно большая. Если рассматривать компенсатор сильфонный (осевой) серии РК, у него предусмотрен выход на 56 мм. В данном случае масса изделия равняется 12 кг. Дополнительно специалисты указываются на низкую проводимость устройства. Минимальная допустимая температура компенсатора располагается на отметке -20 градусов. Устройство замечательно подходит для теплоизоляционных труб. Крепление устройства производится при помощи жгута. Зажим в данном случае подбирается на два винта. Отверстия в представленной модификации отсутствуют. Входное отверстие используется на 28 мм. Параметр жесткости устройства равняется 300 Н. Освевой ход для 1000 циклов составляет примерно 400 мм. Максимальная допустимая температура у компенсаторов этого типа - 340 градусов. Однако в данном случае все зависит от производителя и маркировки используемой стали.

Назначение фланцевых устройств

Фланцевые сильфонные компенсаторы для тепловых сетей подходят для труб разного диаметра. Наиболее часто устройства используются для соединения стальных трубок. Многие модификации производятся из стали серии 17 ГС. Большинство устройств обладает широким выходом. Максимальная допустимая температура компенсаторов равняется 340 градусов.

Также надо отметить, что существуют модели с узкими каналами. Арматуры у них всегда делаются из стали. Некоторые устройства производятся с уплотнителями. Выход у них, как правило, устанавливается диаметром от 50 мм. Осевой ход для 50 циклов равняется не более 80 мм. Масса обычной модели составляет приблизительно 8 кг. Минимальная допустимая температура компенсаторов располагается на уровне -20 градусов.

Сдвиговые устройства

Сдвиговые сильфонные компенсаторы для тепловых сетей обладают подвижными наконечниками. Модификации производятся разных размеров. Современные модели делаются с широким держателем. Также надо отметить, с узким выходом. В среднем диаметр трубки равняется 80 мм. Осевой ход при 100 циклах достигает максимум 20 мм. Масса обычной модели колеблется в районе 8 кг. Предельное давление при этом составляет около 3.3 бара. Существуют модификации с наконечниками и без них. Также надо отметить, что на рынке представлены компактные модификации. Если рассматривать модель СКУ ППУ, у нее имеется выход с трубкой. Сталь, как правило, применяется серии 17Г. Максимальная допустимая температура у компенсаторов этого типа составляет 450 градусов.

Угловые модели

Угловые сильфонные компенсаторы для тепловых сетей в последнее время считаются очень популярными. У них используется одна стойка. Сталь применяется разных серий. Стандартные модели делаются с короткими держателями. Также надо отметить, что есть модификации с широким выходом для теплоизоляционных труб. Входное отверстие у таких моделей равняется примерно 65 мм. Осевой ход при 50 циклах составляет не более 80 мм. Масса обычной модели равняется примерно 7 кг.

Также надо отметить, что существуют устройства с отверстиями. Предельное давление у них достигает 3.5 бар. Минимальная допустимая температура у компенсаторов этого типа стартует от -20 градусов. Еще есть модификации с короткими трубками, которые мало весят. Если рассматривать сильфонный компенсатор ППУ, у него имеется пять отверстий. При этом масса модификации составляет ровно 10 кг. Коэффициент жесткости в устройстве достигается 322 Н.

Назначение карданных устройств

Карданные модели замечательно подходят для тепловых сетей. При этом трубы фиксируются очень быстро. Некоторые модификации делаются с короткой стойкой. Держатели у них крепятся по сторонам. Также надо отметить, что есть устройства с широким выходом. Отверстия у них располагаются на стойке. Масса стандартного устройства составляет 7 кг. Коэффициент жесткости зависит от многих факторов. Также надо отметить, что есть большие модификации, которые делаются из стали. У них применяется выход диаметром от 80 мм. Сталь может применяться серии 17Г.

Теплоизолированные модификации

Теплоизолированные модели пользуются большим спросом. У них применяется очень жесткая стойка. Также надо отметить, что есть модели с короткими стойками. При этом трубки устанавливаются с широким выходом. Масса равняется 12 кг. Также надо отметить, что выход используется диаметром от 60 мм. Данные устройства отлично подходят для теплоизоляционных изогнутых труб.

Держатели применяются разной формы. Коэффициент жесткости у модификаций стартует от 400 Н. Изоляция сильфонных компенсаторов выполнена с уплотнителем. Некоторые модели способны похвастаться своей прочностью. Минимальная допустимая температура стандартного компенсатора составляет -10 градусов. Отверстия в данном случае находятся на стойке. Наиболее распространенными считаются устройства с одним выходом. Максимальная допустимая температура у компенсаторов этого типа равняется 340 градусов. Также есть модели с высоким коэффициентом жесткости. В среднем масса у таких изделий составляет 15 кг. Сталь при этом применяется серии 18Г.

Блочные модели

Блочные модификации являются очень распространенными и соответствуют стандартам СНИП (тепловые сети). Сталь у них применяется серии 09ГС. Также есть модификации с удлинителями. Устройства часто применяются для изогнутых труб. Осевой ход при 50 циклах в среднем равняется 70 мм. Масса стандартной модели составляет 9 кг. Выход в устройствах стартует от 70 мм. Обычная модель делается с одной трубкой.

Есть модификации с длинной стойкой. Существуют устройства с 4 и 8 отверстиями. Минимальная допустимая температура у компенсаторов этого равняется 60 мм. Если рассматривать компенсаторы в у них применяется четыре отверстия. Масса устройства составляет 9 кг. Коэффициент жесткости у представленной модификации располагается на уровне 430 Н.

Стартовые модификации

Стартовые устройства выделяются наличием широкого выхода. У моделей стойки деются разной толщины. Также надо отметить, что производятся модификации с жесткими фиксаторами. Большинство моделей делаются малого размера. В среднем стандартная модификация весит не более 8 кг. Также надо отметить, что сталь, как правило, применяется серии 17Г. Диаметр входного отверстия у моделей не превышает 65 мм. Коэффициент жесткости стартует от 300 Н. Осевой ход у большинства устройства не превышает 20 мм.

Поворотные модели

Поворотные модели, которые соответствуют принятым стандартам СНИП (тепловые сети), хорошо подходят для соединения изогнутых труб. У моделей производятся стойки разной длины. Существуют модификации на 4 и 8 отверстий. Если рассматривать устройства серии РК, у них имеется длинная трубка. Коэффициент жесткости не превышает 340 Н. Осевой ход при 50 циклов равняется 50 мм. Выходное отверстие в устройстве составляет 45 мм. Всего у модели имеется четыре отверстия. Минимальная допустимая температура компенсатора составляет -10 градусов.

Также есть модификации с узким выходом. У них имеется две стойки. Фиксация устройства осуществляется на винтах. Модели неплохо подходят для изогнутых труб. Также стоит отметить, что существуют компенсаторы на широких подставках. В среднем диаметр выхода равняется 60 мм. При этом коэффициент жесткости стартует от 320 Н. Специалисты говорят о том, что модели очень просты в установке. Дополнительно важно учитывать высокий параметр допустимой температуры.