Деформация при поперечном изгибе балки характеризуется. Архив рубрики: Задачи на изгиб

Для консольной балки, нагруженной распределенной нагрузкой интенсивностью кН/м и сосредоточенным моментом кН·м (рис. 3.12), требуется: построить эпюры перерезывающих сил и изгибающих моментов , подобрать балку круглого поперечного сечения при допускаемом нормальном напряжении кН/см2 и проверить прочность балки по касательным напряжениям при допускаемом касательном напряжении кН/см2. Размеры балки м; м; м.

Расчетная схема для задачи на прямой поперечный изгиб

Рис. 3.12

Решение задачи "прямой поперечный изгиб"

Определяем опорные реакции

Горизонтальная реакция в заделке равна нулю, поскольку внешние нагрузки в направлении оси z на балку не действуют.

Выбираем направления остальных реактивных усилий, возникающих в заделке: вертикальную реакцию направим, например, вниз, а момент – по ходу часовой стрелки. Их значения определяем из уравнений статики:

Составляя эти уравнения, считаем момент положительным при вращении против хода часовой стрелки, а проекцию силы положительной, если ее направление совпадает с положительным направлением оси y.

Из первого уравнения находим момент в заделке :

Из второго уравнения – вертикальную реакцию :

Полученные нами положительные значения для момента и вертикальной реакции в заделке свидетельствуют о том, что мы угадали их направления.

В соответствии с характером закрепления и нагружения балки, разбиваем ее длину на два участка. По границам каждого из этих участков наметим четыре поперечных сечения (см. рис. 3.12), в которых мы и будем методом сечений (РОЗУ) вычислять значения перерезывающих сил и изгибающих моментов.

Сечение 1. Отбросим мысленно правую часть балки. Заменим ее действие на оставшуюся левую часть перерезывающей силой и изгибающим моментом . Для удобства вычисления их значений закроем отброшенную нами правую часть балки листком бумаги, совмещая левый край листка с рассматриваемым сечением.

Напомним, что перерезывающая сила, возникающая в любом поперечном сечении, должна уравновесить все внешние силы (активные и реактивные), которые действуют на рассматриваемую (то есть видимую) нами часть балки. Поэтому перерезывающая сила должна быть равна алгебраической сумме всех сил, которые мы видим.

Приведем и правило знаков для перерезывающей силы: внешняя сила, действующая на рассматриваемую часть балки и стремящаяся «повернуть» эту часть относительно сечения по ходу часовой стрелки, вызывает в сечении положительную перерезывающую силу. Такая внешняя сила входит в алгебраическую сумму для определения со знаком «плюс».

В нашем случае мы видим только реакцию опоры , которая вращает видимую нами часть балки относительно первого сечения (относительно края листка бумаги) против хода часовой стрелки. Поэтому

кН.

Изгибающий момент в любом сечении должен уравновесить момент, создаваемый видимыми нами внешними усилиями, относительно рассматриваемого сечения. Следовательно, он равен алгебраической сумме моментов всех усилий, которые действуют на рассматриваемую нами часть балки, относительно рассматриваемого сечения (иными словами, относительно края листка бумаги). При этом внешняя нагрузка, изгибающая рассматриваемую часть балки выпуклостью вниз, вызывает в сечении положительный изгибающий момент. И момент, создаваемый такой нагрузкой, входит в алгебраическую сумму для определения со знаком «плюс».

Мы видим два усилия: реакцию и момент в заделке . Однако у силы плечо относительно сечения 1 равно нулю. Поэтому

кН·м.

Знак «плюс» нами взят потому, что реактивный момент изгибает видимую нами часть балки выпуклостью вниз.

Сечение 2. По-прежнему будем закрывать листком бумаги всю правую часть балки. Теперь, в отличие от первого сечения, у силы появилось плечо: м. Поэтому

кН; кН·м.

Сечение 3. Закрывая правую часть балки, найдем

кН;

Сечение 4. Закроем листком левую часть балки. Тогда

кН·м.

кН·м.

.

По найденным значениям строим эпюры перерезывающих сил (рис. 3.12, б) и изгибающих моментов (рис. 3.12, в).

Под незагруженными участками эпюра перерезывающих сил идет параллельно оси балки, а под распределенной нагрузкой q – по наклонной прямой вверх. Под опорной реакцией на эпюре имеется скачок вниз на величину этой реакции, то есть на 40 кН.

На эпюре изгибающих моментов мы видим излом под опорной реакцией . Угол излома направлен навстречу реакции опоры. Под распределенной нагрузкой q эпюра изменяется по квадратичной параболе, выпуклость которой направлена навстречу нагрузке. В сечении 6 на эпюре – экстремум, поскольку эпюра перерезывающей силы в этом месте проходит здесь через нулевое значение.

Определяем требуемый диаметр поперечного сечения балки

Условие прочности по нормальным напряжениям имеет вид:

,

где – момент сопротивления балки при изгибе. Для балки круглого поперечного сечения он равен:

.

Наибольший по абсолютному значению изгибающий момент возникает в третьем сечении балки: кН·см.

Тогда требуемый диаметр балки определяется по формуле

см.

Принимаем мм. Тогда

кН/см2 кН/см2.

«Перенапряжение» составляет

,

что допускается.

Проверяем прочность балки по наибольшим касательным напряжениям

Наибольшие касательные напряжения, возникающие в поперечном сечении балки круглого сечения, вычисляются по формуле

,

где – площадь поперечного сечения.

Согласно эпюре , наибольшее по алгебраической величине значение перерезывающей силы равно кН. Тогда

кН/см2 кН/см2,

то есть условие прочности и по касательным напряжениям выполняется, причем, с большим запасом.

Пример решения задачи "прямой поперечный изгиб" №2

Условие примера задачи на прямой поперечный изгиб

Для шарнирно опертой балки, нагруженной распределенной нагрузкой интенсивностью кН/м, сосредоточенной силой кН и сосредоточенным моментом кН·м (рис. 3.13), требуется построить эпюры перерезывающих сил и изгибающих моментов и подобрать балку двутаврового поперечного сечения при допускаемом нормальном напряжении кН/см2 и допускаемом касательном напряжении кН/см2. Пролет балки м.

Пример задачи на прямой изгиб – расчетная схема


Рис. 3.13

Решение примера задачи на прямой изгиб

Определяем опорные реакции

Для заданной шарнирно опертой балки необходимо найти три опорные реакции: , и . Поскольку на балку действуют только вертикальные нагрузки, перпендикулярные к ее оси, горизонтальная реакция неподвижной шарнирной опоры A равна нулю: .

Направления вертикальных реакций и выбираем произвольно. Направим, например, обе вертикальные реакции вверх. Для вычисления их значений составим два уравнения статики:

Напомним, что равнодействующая погонной нагрузки , равномерно распределенной на участке длиной l, равна , то есть равна площади эпюры этой нагрузки и приложена она в центре тяжести этой эпюры, то есть посредине длины.

;

кН.

Делаем проверку: .

Напомним, что силы, направление которых совпадает с положительным направлением оси y, проектируются (проецируются) на эту ось со знаком плюс:

то есть верно.

Строим эпюры перерезывающих сил и изгибающих моментов

Разбиваем длину балки на отдельные участки. Границами этих участков являются точки приложения сосредоточенных усилий (активных и/или реактивных), а также точки, соответствующие началу и окончанию действия распределенной нагрузки. Таких участков в нашей задаче получается три. По границам этих участков наметим шесть поперечных сечений, в которых мы и будем вычислять значения перерезывающих сил и изгибающих моментов (рис. 3.13, а).

Сечение 1. Отбросим мысленно правую часть балки. Для удобства вычисления перерезывающей силы и изгибающего момента , возникающих в этом сечении, закроем отброшенную нами часть балки листком бумаги, совмещая левый край листка бумаги с самим сечением.

Перерезывающая сила в сечении балки равна алгебраической сумме всех внешних сил (активных и реактивных), которые мы видим. В данном случае мы видим реакцию опоры и погонную нагрузку q, распределенную на бесконечно малой длине. Равнодействующая погонной нагрузки равна нулю. Поэтому

кН.

Знак «плюс» взят потому, что сила вращает видимую нами часть балки относительно первого сечения (края листка бумаги) по ходу часовой стрелки.

Изгибающий момент в сечении балки равен алгебраической сумме моментов всех усилий, которые мы видим, относительно рассматриваемого сечения (то есть относительно края листка бумаги). Мы видим реакцию опоры и погонную нагрузку q, распределенную на бесконечно малой длине. Однако у силы плечо равно нулю. Равнодействующая погонной нагрузки также равна нулю. Поэтому

Сечение 2. По-прежнему будем закрывать листком бумаги всю правую часть балки. Теперь мы видим реакцию и нагрузку q, действующую на участке длиной . Равнодействующая погонной нагрузки равна . Она приложена посредине участка длиной . Поэтому

Напомним, что при определении знака изгибающего момента мы мысленно освобождаем видимую нами часть балки от всех фактических опорных закреплений и представляем ее как бы защемленной в рассматриваемом сечении (то есть левый край листка бумаги нами мысленно представляется жесткой заделкой).

Сечение 3. Закроем правую часть. Получим

Сечение 4. Закрываем листком правую часть балки. Тогда

Теперь, для контроля правильности вычислений, закроем листком бумаги левую часть балки. Мы видим сосредоточенную силу P, реакцию правой опоры и погонную нагрузку q, распределенную на бесконечно малой длине. Равнодействующая погонной нагрузки равна нулю. Поэтому

кН·м.

То есть все верно.

Сечение 5. По-прежнему закроем левую часть балки. Будем иметь

кН;

кН·м.

Сечение 6. Опять закроем левую часть балки. Получим

кН;

По найденным значениям строим эпюры перерезывающих сил (рис. 3.13, б) и изгибающих моментов (рис. 3.13, в).

Убеждаемся в том, что под незагруженным участком эпюра перерезывающих сил идет параллельно оси балки, а под распределенной нагрузкой q – по прямой, имеющей наклон вниз. На эпюре имеется три скачка: под реакцией – вверх на 37,5 кН, под реакцией – вверх на 132,5 кН и под силой P – вниз на 50 кН.

На эпюре изгибающих моментов мы видим изломы под сосредоточенной силой P и под опорными реакциями. Углы изломов направлены навстречу этим силам. Под распределенной нагрузкой интенсивностью q эпюра изменяется по квадратичной параболе, выпуклость которой направлена навстречу нагрузке. Под сосредоточенным моментом – скачок на 60 кН ·м, то есть на величину самого момента. В сечении 7 на эпюре – экстремум, поскольку эпюра перерезывающей силы для этого сечения проходит через нулевое значение (). Определим расстояние от сечения 7 до левой опоры.

Расчет балки на изгиб «вручную», по-дедовски, позволяет познать один из важнейших, красивейших, четко математически выверенных алгоритмов науки сопротивление материалов. Использование многочисленных программ типа «ввел исходные данные...

...– получи ответ» позволяет современному инженеру сегодня работать гораздо быстрее, чем его предшественникам сто, пятьдесят и даже двадцать лет назад. Однако при таком современном подходе инженер вынужден полностью доверять авторам программы и со временем перестает «ощущать физический смысл» расчетов. Но авторы программы – это люди, а людям свойственно ошибаться. Если бы это было не так, то не было бы многочисленных патчей, релизов, «заплаток» практически к любому программному обеспечению. Поэтому, мне кажется, любой инженер должен уметь иногда «вручную» проверить результаты расчетов.

Справка (шпаргалка, памятка) для расчётов балок на изгиб представлена ниже на рисунке.

Давайте на простом житейском примере попробуем ей воспользоваться. Допустим, я решил сделать в квартире турник. Определено место – коридор шириной один метр двадцать сантиметров. На противоположных стенах на необходимой высоте напротив друг друга надежно закрепляю кронштейны, к которым будет крепиться балка-перекладина – пруток из стали Ст3 с наружным диаметром тридцать два миллиметра. Выдержит ли эта балка мой вес плюс дополнительные динамические нагрузки, которые возникнут при выполнении упражнений?

Чертим схему для расчета балки на изгиб. Очевидно, что наиболее опасной будет схема приложения внешней нагрузки, когда я начну подтягиваться, зацепившись одной рукой за середину перекладины.

Исходные данные:

F1 = 900 н – сила, действующая на балку (мой вес) без учета динамики

d = 32 мм – наружный диаметр прутка, из которого сделана балка

E = 206000 н/мм^2 — модуль упругости материала балки стали Ст3

[σи] = 250 н/мм^2 — допустимые напряжения изгиба (предел текучести) для материала балки стали Ст3

Граничные условия:

Мx (0) = 0 н*м – момент в точке z = 0 м (первая опора)

Мx (1,2) = 0 н*м– момент в точке z = 1,2 м (вторая опора)

V (0) = 0 мм – прогиб в точке z = 0 м (первая опора)

V (1,2) = 0 мм – прогиб в точке z = 1,2 м (вторая опора)

Расчет:

1. Для начала вычислим момент инерции Ix и момент сопротивления Wx сечения балки. Они нам пригодятся в дальнейших расчетах. Для кругового сечения (каковым является сечение прутка):

Ix = (π*d^4)/64 = (3.14*(32/10)^4)/64 = 5,147 см^4

Wx = (π*d^3)/32 = ((3.14*(32/10)^3)/32) = 3,217 см^3

2. Составляем уравнения равновесия для вычисления реакций опор R1 и R2:

Qy = -R1+F1-R2 = 0

Мx (0) = F1*(0-b2) -R2*(0-b3) = 0

Из второго уравнения: R2 = F1*b2/b3 = 900*0.6/1.2 = 450 н

Из первого уравнения: R1 = F1-R2 = 900-450 = 450 н

3. Найдем угол поворота балки в первой опоре при z = 0 из уравнения прогиба для второго участка:

V (1.2) = V (0)+U (0)*1.2+(-R1*((1.2-b1)^3)/6+F1*((1.2-b2)^3)/6)/

U (0) = (R1*((1.2-b1)^3)/6 -F1*((1.2-b2)^3)/6)/(E*Ix)/1,2 =

= (450*((1.2-0)^3)/6 -900*((1.2-0.6)^3)/6)/

/(206000*5,147/100)/1,2 = 0,00764 рад = 0,44˚

4. Составляем уравнения для построения эпюр для первого участка (0

Поперечная сила: Qy (z) = -R1

Изгибающий момент: Мx (z) = -R1*(z-b1)

Угол поворота: Ux (z) = U (0)+(-R1*((z-b1)^2)/2)/(E*Ix)

Прогиб: Vy (z) = V (0)+U (0)*z+(-R1*((z-b1)^3)/6)/(E*Ix)

z = 0 м:

Qy (0) = -R1 = -450 н

Ux (0) = U (0) = 0,00764 рад

Vy (0) = V (0) = 0 мм

z = 0,6 м:

Qy (0,6) = -R1 = -450 н

Мx (0,6) = -R1*(0,6-b1) = -450*(0,6-0) = -270 н*м

Ux (0,6) = U (0)+(-R1*((0,6-b1)^2)/2)/(E*Ix) =

0,00764+(-450*((0,6-0)^2)/2)/(206000*5,147/100) = 0 рад

Vy (0,6) = V (0)+U (0)*0,6+(-R1*((0,6-b1)^3)/6)/(E*Ix) =

0+0,00764*0,6+(-450*((0,6-0)^3)/6)/ (206000*5,147/100) = 0,003 м

Балка прогнется по центру на 3 мм под тяжестью моего тела. Думаю, это приемлемый прогиб.

5. Пишем уравнения эпюр для второго участка (b2

Поперечная сила: Qy (z) = -R1+F1

Изгибающий момент: Мx (z) = -R1*(z-b1)+F1*(z-b2)

Угол поворота: Ux (z) = U (0)+(-R1*((z-b1)^2)/2+F1*((z-b2)^2)/2)/(E*Ix)

Прогиб: Vy (z) = V (0)+U (0)*z+(-R1*((z-b1)^3)/6+F1*((z-b2)^3)/6)/(E*Ix)

z = 1,2 м:

Qy (1,2) = -R1+F1 = -450+900 = 450 н

Мx (1,2) = 0 н*м

Ux (1,2) = U (0)+(-R1*((1,2-b1)^2)/2+F1*((1,2-b2)^2)/2)/(E*Ix) =

0,00764+(-450*((1,2-0)^2)/2+900*((1,2-0,6)^2)/2)/

/(206000*5,147/100) = -0.00764 рад

Vy (1,2) = V (1,2) = 0 м

6. Строим эпюры, используя данные полученные выше.

7. Рассчитываем напряжения изгиба в наиболее нагруженном сечении – посередине балки и сравниваем с допустимыми напряжениями:

σи = Mx max/Wx = (270*1000)/(3,217*1000) = 84 н/мм^2

σи = 84 н/мм^2 < [σи] = 250 н/мм^2

По прочности на изгиб расчет показал трехкратный запас прочности – турник можно смело делать из имеющегося прутка диаметром тридцать два миллиметра и длиной тысяча двести миллиметров.

Таким образом, вы теперь легко можете произвести расчет балки на изгиб «вручную» и сравнить с результатами, полученными при расчете по любой из многочисленных программ, представленных в Сети.

Прошу УВАЖАЮЩИХ труд автора ПОДПИСАТЬСЯ на анонсы статей.

Введите Ваш e-mail:

Статьи с близкой тематикой

Отзывы

86 комментариев на «Расчет балки на изгиб — «вручную»!»

  1. Александр Воробьев 19 Июн 2013 22:32
  2. Алексей 18 Сен 2013 17:50
  3. Александр Воробьев 18 Сен 2013 20:47
  4. михамл 02 Дек 2013 17:15
  5. Александр Воробьев 02 Дек 2013 20:27
  6. Дмитрий 10 Дек 2013 21:44
  7. Александр Воробьев 10 Дек 2013 23:18
  8. Дмитрий 11 Дек 2013 15:28
  9. Игорь 05 Янв 2014 04:10
  10. Александр Воробьев 05 Янв 2014 11:26
  11. Андрей 27 Янв 2014 21:38
  12. Александр Воробьев 27 Янв 2014 23:21
  13. Александр 27 Фев 2014 18:20
  14. Александр Воробьев 28 Фев 2014 11:57
  15. Андрей 12 Мар 2014 22:27
  16. Александр Воробьев 13 Мар 2014 09:20
  17. Денис 11 Апр 2014 02:40
  18. Александр Воробьев 13 Апр 2014 17:58
  19. Денис 13 Апр 2014 21:26
  20. Денис 13 Апр 2014 21:46
  21. Александр 14 Апр 2014 08:28
  22. Александр 17 Апр 2014 12:08
  23. Александр Воробьев 17 Апр 2014 13:44
  24. Александр 18 Апр 2014 01:15
  25. Александр Воробьев 18 Апр 2014 08:57
  26. Давид 03 Июн 2014 18:12
  27. Александр Воробьев 05 Июн 2014 18:51
  28. Давид 11 Июл 2014 18:05
  29. Алимжан 12 Сен 2014 13:57
  30. Александр Воробьев 13 Сен 2014 13:12
  31. Александр 14 Окт 2014 22:54
  32. Александр Воробьев 14 Окт 2014 23:11
  33. Александр 15 Окт 2014 01:23
  34. Александр Воробьев 15 Окт 2014 19:43
  35. Александр 16 Окт 2014 02:13
  36. Александр Воробьев 16 Окт 2014 21:05
  37. Александр 16 Окт 2014 22:40
  38. Александр 12 Ноя 2015 18:24
  39. Александр Воробьев 12 Ноя 2015 20:40
  40. Александр 13 Ноя 2015 05:22
  41. Рафик 13 Дек 2015 22:20
  42. Александр Воробьев 14 Дек 2015 11:06
  43. Щур Дмитрий Дмитриевич 15 Дек 2015 13:27
  44. Александр Воробьев 15 Дек 2015 17:35
  45. Ринат 09 Янв 2016 15:38
  46. Александр Воробьев 09 Янв 2016 19:26
  47. Щур Дмитрий Дмитриевич 04 Мар 2016 13:29
  48. Александр Воробьев 05 Мар 2016 16:14
  49. Слава 28 Мар 2016 11:57
  50. Александр Воробьев 28 Мар 2016 13:04
  51. Слава 28 Мар 2016 15:03
  52. Александр Воробьев 28 Мар 2016 19:14
  53. руслан 01 Апр 2016 19:29
  54. Александр Воробьев 02 Апр 2016 12:45
  55. Александр 22 Апр 2016 18:55
  56. Александр Воробьев 23 Апр 2016 12:14
  57. Александр 25 Апр 2016 10:45
  58. Олег 09 мая 2016 17:39
  59. Александр Воробьев 09 мая 2016 18:08
  60. михаил 16 мая 2016 09:35
  61. Александр Воробьев 16 мая 2016 16:06
  62. Михаил 09 Июн 2016 22:12
  63. Александр Воробьев 09 Июн 2016 23:14
  64. Михаил 16 Июн 2016 11:25
  65. Александр Воробьев 17 Июн 2016 10:43
  66. Дмитрий 05 Июл 2016 20:45
  67. Александр Воробьев 06 Июл 2016 09:39
  68. Дмитрий 06 Июл 2016 13:09
  69. Виталий 16 Янв 2017 19:51
  70. Александр Воробьев 16 Янв 2017 20:40
  71. Виталий 17 Янв 2017 15:32
  72. Александр Воробьев 17 Янв 2017 19:39
  73. Виталий 17 Янв 2017 20:40
  74. Алексей 15 Фев 2017 02:09
  75. Александр Воробьев 15 Фев 2017 19:08
  76. Алексей 16 Фев 2017 03:50
  77. Дмитрий 09 Июн 2017 12:05
  78. Александр Воробьев 09 Июн 2017 13:32
  79. Дмитрий 09 Июн 2017 14:52
  80. Александр Воробьев 09 Июн 2017 20:14
  81. Сергей 09 Мар 2018 21:54
  82. Александр Воробьев 10 Мар 2018 09:11
  83. Евгений Александрович 06 мая 2018 20:19
  84. Александр Воробьев 06 мая 2018 21:16
  85. Виталий 29 Июн 2018 19:11
  86. Александр Воробьев 29 Июн 2018 23:41

Прямой изгиб – это вид деформации, при котором в поперечных сечениях стержня возникают два внутренних силовых фактора: изгибающий момент и поперечная сила.

Чистый изгиб – это частный случай прямого изгиба, при котором в поперечных сечениях стержня возникает только изгибающий момент, а поперечная сила равна нулю.

Пример чистого изгиба – участок CD на стержне AB . Изгибающий момент – это величина Pa пары внешних сил, вызывающая изгиб. Из равновесия части стержня слева от поперечного сечения mn следует, что внутренние усилия, распределенные по этому сечению, статически эквивалентны моменту M , равному и противоположно направленному изгибающему моменту Pa .

Чтобы найти распределение этих внутренних усилий по поперечному сечению, необходимо рассмотреть деформацию стержня.

В простейшем случае стержень имеет продольную плоскость симметрии и подвергается действию внешних изгибающих пар сил, находящихся в этой плоскости. Тогда изгиб будет происходить в той же плоскости.

Ось стержня nn 1 – это линия, проходящая через центры тяжести его поперечных сечений.

Пусть поперечное сечение стержня – прямоугольник. Нанесем на его грани две вертикальные линии mm и pp . При изгибе эти линии остаются прямолинейными и поворачиваются так, что остаются перпендикулярными продольным волокнам стержня.

Дальнейшая теория изгиба основана на допущении, что не только линии mm и pp , но все плоское поперечное сечение стержня остается после изгиба плоским и нормальным к продольным волокнам стержня. Следовательно, при изгибе поперечные сечения mm и pp поворачиваются относительно друг друга вокруг осей, перпендикулярных плоскости изгиба (плоскости чертежа). При этом продольные волокна на выпуклой стороне испытывают растяжение, а волокна на вогнутой стороне – сжатие.

Нейтральная поверхность – это поверхность, не испытывающая деформации при изгибе. (Сейчас она расположена перпендикулярно чертежу, деформированная ось стержня nn 1 принадлежит этой поверхности).

Нейтральная ось сечения – это пересечение нейтральной поверхности с любым с любым поперечным сечением (сейчас тоже расположена перпендикулярно чертежу).

Пусть произвольное волокно находится на расстоянии y от нейтральной поверхности. ρ – радиус кривизны изогнутой оси. Точка O – центр кривизны. Проведем линию n 1 s 1 параллельно mm . ss 1 – абсолютное удлинение волокна.

Относительное удлинение ε x волокна

Из этого следует, что деформации продольных волокон пропорциональны расстоянию y от нейтральной поверхности и обратно пропорциональны радиусу кривизны ρ .

Продольное удлинение волокон выпуклой стороны стержня сопровождается боковым сужением , а продольное укорочение вогнутой стороны – боковым расширением , как в случае простого растяжения и сжатия. Из-за этого вид всех поперечных сечений меняется, вертикальные стороны прямоугольника становятся наклонными. Деформация в боковом направлении z :



μ – коэффициент Пуассона.

Вследствие такого искажения все прямые линии поперечного сечения, параллельные оси z , искривляются так, чтоб остаться нормальными к боковым сторонам сечения. Радиус кривизны этой кривой R будет больше, чем ρ в таком же отношении, в каком ε x по абсолютной величине больше чем ε z , и мы получим

Этим деформациям продольных волокон отвечают напряжения

Напряжение в любом волокне пропорционально его расстоянию от нейтральной оси n 1 n 2 . Положение нейтральной оси и радиус кривизны ρ – две неизвестные в уравнении для σ x – можно определить из условия, что усилия, распределенные по любому поперечному сечению, образуют пару сил, которая уравновешивает внешний момент M .

Все вышесказанное также справедливо, если стержень не имеет продольную плоскость симметрии, в которой действует изгибающий момент, лишь бы только изгибающий момент действовал в осевой плоскости, которая заключает в себе одну из двух главных осей поперечного сечения. Эти плоскости называются главными плоскостями изгиба .

Когда имеется плоскость симметрии и изгибающий момент действует в этой плоскости, прогиб происходит именно в ней. Моменты внутренних усилий относительно оси z уравновешивают внешний момент M . Моменты усилий относительно оси y взаимно уничтожаются.

Изгибом называется деформация, при которой ось стержня и все его волокна, т. е. продольные линии, параллельные оси стержня, искривляются под действием внешних сил. Наиболее простой случай изгиба получается тогда, когда внешние силы будут лежать в плоскости, проходящей через центральную ось стержня, и не дадут проекций на эту ось. Такой случай изгиба называют поперечным изгибом. Различают плоский изгиб и косой.

Плоский изгиб – такой случай, когда изогнутая ось стержня расположена в той же плоскости, в которой действуют внешние силы.

Косой (сложный) изгиб – такой случай изгиба, когда изогнутая ось стержня не лежит в плоскости действия внешних сил.

Работающий на изгиб стержень обычно называют балкой.

При плоском поперечном изгибе балок в сечении с системой координат у0х могут возникать два внутренних усилия – поперечная сила Q у и изгибающий момент М х; в дальнейшем для них вводятся обозначения Q и M. Если в сечении или на участке балки поперечная сила отсутствует (Q=0), а изгибающий момент не равен нулю или М – const, то такой изгиб принято называть чистым .

Поперечная сила в каком-либо сечении балки численно равна алгебраической сумме проекций на ось у всех сил (включая опорные реакции), расположенных по одну сторону (любую) от проведенного сечения.

Изгибающий момент в сечении балки численно равен алгебраической сумме моментов всех сил (включая и опорные реакции), расположенных по одну сторону (любую) от проведенного сечения относительно центра тяжести этого сечения, точнее, относительно оси, проходящей перпендикулярно плоскости чертежа через центр тяжести проведенного сечения.

Сила Q представляет равнодействующую распределенных по сечению внутренних касательных напряжений , а момент М сумму моментов вокруг центральной оси сечения Х внутренних нормальных напряжений.

Между внутренними усилиями существует дифференциальная зависимость

которая используется при построении и проверке эпюр Q и M.

Поскольку часть волокон балки растягивается, а часть сжимается, причем переход от растяжения к сжатию происходит плавно, без скачков, в средней части балки находится слой, волокна которого только искривляются, но не испытывают ни растяжения, ни сжатия. Такой слой называют нейтральным слоем . Линия, по которой нейтральный слой пересекается с поперечным сечением балки, называется нейтральной линие й или нейтральной осью сечения. Нейтральные линии нанизаны на ось балки.

Линии, проведенные на боковой поверхности балки перпендикулярно оси, остаются плоскими при изгибе. Эти опытные данные позволяют положить в основу выводов формул гипотезу плоских сечений. Согласно этой гипотезе сечения балки плоские и перпендикулярные к ее оси до изгиба, остаются плоскими и оказываются перпендикулярными изогнутой оси балки при ее изгибе. Поперечное сечение балки при изгибе искажается. За счет поперечной деформации размеры поперечного сечения в сжатой зоне балки увеличиваются, а в растянутой сжимаются.

Допущения для вывода формул. Нормальные напряжения

1) Выполняется гипотеза плоских сечений.

2) Продольные волокна друг на друга не давят и, следовательно, под действием нормальных напряжений линейные растяжения или сжатия работают.

3) Деформации волокон не зависят от их положения по ширине сечения. Следовательно, и нормальные напряжения, изменяясь по высоте сечения, остаются по ширине одинаковыми.

4) Балка имеет хотя бы одну плоскость симметрии, и все внешние силы лежат в этой плоскости.

5) Материал балки подчиняется закону Гука, причем модуль упругости при растяжении и сжатии одинаков.

6) Соотношения между размерами балки таковы, что она работает в условиях плоского изгиба без коробления или скручивания.

При чистом изгибе балки на площадках в ее сечении действуют только нормальные напряжения , определяемые по формуле:

где у – координата произвольной точки сечения, отчитываемая от нейтральной линии — главной центральной оси х.

Нормальные напряжения при изгибе по высоте сечения распределяются по линейному закону . На крайних волокнах нормальные напряжения достигают максимального значения, а в центре тяжести сечения равны нулю.

Характер эпюр нормальных напряжений для симметричных сечений относительно нейтральной линии

Характер эпюр нормальных напряжений для сечений, не обладающих симметрией относительно нейтральной линии

Опасными являются точки, наиболее удаленные от нейтральной линии.

Выберем некоторое сечение

Для любой точки сечения,назовем ее точкой К , условие прочности балки по нормальным напряжениям имеет вид:

, где н.о. — это нейтральная ось

это осевой момент сопротивления сечения относительно нейтральной оси. Его размерность см 3 , м 3 . Момент сопротивления характеризует влияние формы и размеров поперечного сечения на величину напряжений.

Условие прочности по нормальным напряжениям:

Нормальное напряжение равно отношению максимального изгибающего момента к осевому моменту сопротивления сечения относительно нейтральной оси.

Если материал неодинаково сопротивляется растяжению и сжатию, то необходимо использовать два условия прочности: для зоны растяжения с допускаемым напряжением на растяжение; для зоны сжатия с допускаемым напряжением на сжатие.

При поперечном изгибе балки на площадках в ее сечении действуют как нормальные , так и касательные напряжения.


Общие понятия.

Деформация изгиба заключается в искривлении оси прямого стержня или в изменении начальной кривизны прямого стержня (рис. 6.1) . Ознакомимся с основными понятиями, которые используются при рассмотрении деформации изгиба.

Стержни, работающие на изгиб, называют балками .

Чистым называется изгиб, при котором изгибающий момент является единственным внутренним силовым фактором, возникающем в поперечном сечении балки.

Чаще, в поперечном сечении стержня наряду с изгибающим моментом возникает также и поперечная сила. Такой изгиб называют поперечным.

Плоским (прямым) называют изгиб, когда плоскость действия изгибающего момента в поперечном сечении проходит через одну из главных центральных осей поперечного сечения.

При косом изгибе плоскость действия изгибающего момента пересекает поперечное сечение балки по линии, не совпадающей ни с одной из главных центральных осей поперечного сечения.

Изучение деформации изгиба начнем со случая чистого плоского изгиба.

Нормальные напряжения и деформации при чистом изгибе.

Как уже было сказано, при чистом плоском изгибе в поперечном сечении из шести внутренних силовых факторов не равен нулю только изгибающий момент (рис. 6.1, в):

; (6.1)

Опыты, поставленные на эластичных моделях, показывают, что если на поверхность модели нанести сетку линий (рис. 6.1, а) , то при чистом изгибе она деформируется следующим образом (рис. 6.1, б) :

а) продольные линии искривляются по длине окружности;

б) контуры поперечных сечений остаются плоскими;

в) линии контуров сечений всюду пересекаются с продольными волокнами под прямым углом.

На основании этого можно предположить, что при чистом изгибе поперечные сечения балки остаются плоскими и поворачиваются так, что остаются нормальными к изогнутой оси балки (гипотеза плоских сечений при изгибе).

Рис. .

Замеряя длину продольных линий (рис. 6.1, б), можно обнаружить, что верхние волокна при деформации изгиба балки удлиняются, а нижние укорачиваются. Очевидно, что можно найти такие волокна, длина которых остается неизменной. Совокупность волокон, не меняющих своей длины при изгибе балки, называется нейтральным слоем (н. с.) . Нейтральный слой пересекает поперечное сечение балки по прямой, которая называется нейтральной линией (н. л.) сечения .

Для вывода формулы, определяющей величину нормальных напряжений, возникающих в поперечном сечении, рассмотрим участок балки в деформированном и не деформированном состоянии (рис. 6.2).

Рис. .

Двумя бесконечно малыми поперечными сечениями выделим элемент длиной. До деформации сечения, ограничивающие элемент, были параллельны между собой (рис. 6.2, а), а после деформации они несколько наклонились, образуя угол. Длина волокон, лежащих в нейтральном слое, при изгибе не меняется. Обозначим радиус кривизны следа нейтрального слоя на плоскости чертежа буквой. Определим линейную деформацию произвольного волокна, отстоящего на расстоянии от нейтрального слоя.

Длина этого волокна после деформации (длина дуги) равна. Учитывая, что до деформации все волокна имели одинаковую длину, получим, что абсолютное удлинение рассматриваемого волокна

Его относительная деформация

Очевидно, что, так как длина волокна, лежащего в нейтральном слое не изменилась. Тогда после подстановки получим

(6.2)

Следовательно, относительная продольная деформация пропорциональна расстоянию волокна от нейтральной оси.

Введем предположение, что при изгибе продольные волокна не надавливают друг на друга. При таком предположении каждое волокно деформируется изолировано, испытывая простое растяжение или сжатие, при котором. С учетом (6.2)

, (6.3)

т. е. нормальные напряжения прямо пропорциональны расстояниям рассматриваемых точек сечения от нейтральной оси.

Подставим зависимость (6.3) в выражение изгибающего момента в поперечном сечении (6.1)

Вспомним, что интеграл представляет собой момент инерции сечения относительно оси

Или

(6.4)

Зависимость (6.4) представляет собой закон Гука при изгибе, поскольку она связывает деформацию (кривизну нейтрального слоя) с действующим в сечении моментом. Произведение носит название жесткости сечения при изгибе, Н· м 2 .

Подставим (6.4) в (6.3)

(6.5)

Это и есть искомая формула для определения нормальных напряжений при чистом изгибе балки в любой точке ее сечения.

Для того, чтобы установить, где в поперечном сечении находится нейтральная линия подставим значение нормальных напряжений в выражение продольной силы и изгибающего момента

Поскольку,

то

(6.6)

(6.7)

Равенство (6.6) указывает, что ось – нейтральная ось сечения – проходит через центр тяжести поперечного сечения.

Равенство (6.7) показывает что и - главные центральные оси сечения.

Согласно (6.5) наибольшей величины напряжения достигают в волокнах наиболее удаленных от нейтральной линии

Отношение представляет собой осевой момент сопротивления сечения относительно его центральной оси, значит

Значение для простейших поперечных сечений следующее:

Для прямоугольного поперечного сечения

, (6.8)

где - сторона сечения перпендикулярная оси;

Сторона сечения параллельная оси;

Для круглого поперечного сечения

, (6.9)

где - диаметр круглого поперечного сечения.

Условие прочности по нормальным напряжениям при изгибе можно записать в виде

(6.10)

Все полученные формулы получены для случая чистого изгиба прямого стержня. Действие же поперечной силы приводит к тому, что гипотезы, положенные в основу выводов, теряют свою силу. Однако практика расчетов показывает, что и при поперечном изгибе балок и рам, когда в сечении кроме изгибающего момента действует еще продольная сила и поперечная сила, можно пользоваться формулами, приведенными для чистого изгиба. Погрешность при этом получается незначительной.

Определение поперечных сил и изгибающих моментов.

Как уже было сказано, при плоском поперечном изгибе в поперечном сечении балки возникают два внутренних силовых фактора и.

Перед определением и определяют реакции опор балки (рис. 6.3, а), составляя уравнения равновесия статики.

Для определения и применим метод сечений. В интересующем нас месте сделаем мысленный разрез балки, например, на расстоянии от левой опоры. Отбросим одну из частей балки, например правую, и рассмотрим равновесие левой части (рис. 6.3, б). Взаимодействие частей балки заменим внутренними усилиями и.

Установим следующие правила знаков для и:

  • Поперечная сила в сечении положительна, если ее векторы стремятся вращать рассматриваемое сечение по часовой стрелке ;
  • Изгибающий момент в сечении положителен, если он вызывает сжатие верхних волокон.

Рис. .

Для определения данных усилий используем два уравнения равновесия:

1. ; ; .

2. ;

Таким образом,

а) поперечная сила в поперечном сечении балки численно равна алгебраической сумме проекций на поперечную ось сечения всех внешних сил, действующих по одну сторону от сечения;

б) изгибающий момент в поперечном сечении балки численно равен алгебраической сумме моментов (вычисленных относительно центра тяжести сечения) внешних сил, действующих по одну сторону от данного сечения.

При практическом вычислении руководствуются обычно следующим:

  1. Если внешняя нагрузка стремится повернуть балку относительно рассматриваемого сечения по часовой стрелке, (рис. 6.4, б) то в выражении для она дает положительное слагаемое.
  2. Если внешняя нагрузка создает относительно рассматриваемого сечения момент, вызывающий сжатие верхних волокон балки (рис. 6.4, а), то в выражении для в этом сечении она дает положительное слагаемое.

Рис. .

Построение эпюр и в балках.

Рассмотрим двухопорную балку (рис. 6.5, а) . На балку действует в точке сосредоточенный момент, в точке - сосредоточенная сила и на участке - равномерно распределенная нагрузка интенсивностью.

Определим опорные реакции и (рис. 6.5, б) . Равнодействующая распределенной нагрузки равна, а линия действия ее проходит через центр участка. Составим уравнения моментов относительно точек и.

Определим поперечную силу и изгибающий момент в произвольном сечений, расположенном на участке на расстоянии от точки А (рис. 6.5, в) .

(рис. 6.5, г). Расстояние может изменяться в пределах ().

Значение поперечной силы не зависит от координаты сечения, следовательно, во всех сечениях участка поперечные силы одинаковы и эпюра имеет вид прямоугольника. Изгибающий момент

Изгибающий момент изменяется по линейному закону. Определим ординаты эпюры для границ участка.

Определим поперечную силу и изгибающий момент в произвольном сечений, расположенном на участке на расстоянии от точки (рис. 6.5, д). Расстояние может изменяться в пределах ().

Поперечная сила изменяется по линейному закону. Определим для границ участка.

Изгибающий момент

Эпюра изгибающих моментов на этом участке будет параболической.

Чтобы определить экстремальное значение изгибающего момента, приравниваем к нулю производную от изгибающего момента по абсциссе сечения:

Отсюда

Для сечения с координатой значение изгибающего момента будет составлять

В результате получаем эпюры поперечных сил (рис. 6.5, е) и изгибающих моментов (рис. 6.5, ж).

Дифференциальные зависимости при изгибе.

(6.11)

(6.12)

(6.13)

Эти зависимости позволяют установить некоторые особенности эпюр изгибающих моментов и поперечных сил:

Н а участках, где нет распределенной нагрузки, эпюры ограничены прямыми, параллельными нулевой линии эпюры, а эпюры в общем случае – наклонными прямыми .

Н а участках, где к балке приложена равномерно распределенная нагрузка, эпюра ограничена наклонными прямыми, а эпюра - квадратичными параболами с выпуклостью, обращенной в сторону, противоположную направлению действия нагрузки .

В сечениях, где, касательная к эпюре параллельна нулевой линии эпюры .

Н а участках, где, момент возрастает; на участках, где, момент убывает .

В сечениях, где к балке приложены сосредоточенные силы, на эпюре будут скачки на величину приложенных сил, а на эпюре будут переломы .

В сечениях, где к балке приложены сосредоточенные моменты, на эпюре будут скачки на величину этих моментов.

Ординаты эпюры пропорциональны тангенсу угла наклона касательной к эпюре.