Линейные неравенства с модулем примеры. Решение неравенств с модулем

Этот математический калькулятор онлайн поможет вам решить уравнение или неравенство с модулями . Программа для решения уравнений и неравенств с модулями не просто даёт ответ задачи, она приводит подробное решение с пояснениями , т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

|x| или abs(x) - модуль x

Введите уравнение или неравенство с модулями

Решить уравнение или неравенство

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Уравнения и неравенства с модулями

В курсе алгебры основной школы могут встретится простейшие уравнения и неравенства с модулями. Для их решения можно применять геометрический метод, основанный на том, что \(|x-a| \) - это расстояние на числовой прямой между точками x и a: \(|x-a| = \rho (x;\; a) \). Например, для решения уравнения \(|x-3|=2 \) нужно найти на числовой прямой точки, удалённые от точки 3 на расстояние 2. Таких точек две: \(x_1=1 \) и \(x_2=5 \).

Решая неравенство \(|2x+7|

Но основной способ решения уравнений и неравенств с модулями связан с так называемым «раскрытием модуля по определению»:
если \(a \geq 0 \), то \(|a|=a \);
если \(a Как правило, уравнение (неравенство) с модулями сводится к совокупности уравнений (неравенств), не содержащих знак модуля.

Кроме указанного определения, используются следующие утверждения:
1) Если \(c > 0 \), то уравнение \(|f(x)|=c \) равносильно совокупности уравнений: \(\left[\begin{array}{l} f(x)=c \\ f(x)=-c \end{array}\right. \)
2) Если \(c > 0 \), то неравенство \(|f(x)| 3) Если \(c \geq 0 \), то неравенство \(|f(x)| > c \) равносильно совокупности неравенств: \(\left[\begin{array}{l} f(x) c \end{array}\right. \)
4) Если обе части неравенства \(f(x) ПРИМЕР 1. Решить уравнение \(x^2 +2|x-1| -6 = 0 \).

Если \(x-1 \geq 0 \), то \(|x-1| = x-1 \) и заданное уравнение принимает вид
\(x^2 +2(x-1) -6 = 0 \Rightarrow x^2 +2x -8 = 0 \).
Если же \(x-1 \(x^2 -2(x-1) -6 = 0 \Rightarrow x^2 -2x -4 = 0 \).
Таким образом, заданное уравнение следует рассмотреть по отдельности в каждом из двух указанных случаев.
1) Пусть \(x-1 \geq 0 \), т.е. \(x \geq 1 \). Из уравнения \(x^2 +2x -8 = 0 \) находим \(x_1=2, \; x_2=-4\). Условию \(x \geq 1 \) удовлетворяет лишь значение \(x_1=2\).
2) Пусть \(x-1 Ответ: \(2; \;\; 1-\sqrt{5} \)

ПРИМЕР 2. Решить уравнение \(|x^2-6x+7| = \frac{5x-9}{3} \).

Первый способ (раскрытие модуля по определению).
Рассуждая, как в примере 1, приходим к выводу, что заданное уравнение нужно рассмотреть по отдельности при выполнении двух условий: \(x^2-6x+7 \geq 0 \) или \(x^2-6x+7

1) Если \(x^2-6x+7 \geq 0 \), то \(|x^2-6x+7| = x^2-6x+7 \) и заданное уравнение принимает вид \(x^2-6x+7 = \frac{5x-9}{3} \Rightarrow 3x^2-23x+30=0 \). Решив это квадратное уравнение, получим: \(x_1=6, \; x_2=\frac{5}{3} \).
Выясним, удовлетворяет ли значение \(x_1=6 \) условию \(x^2-6x+7 \geq 0 \). Для этого подставим указанное значение в квадратное неравенство. Получим: \(6^2-6 \cdot 6+7 \geq 0 \), т.е. \(7 \geq 0 \) - верное неравенство. Значит, \(x_1=6 \) - корень заданного уравнения.
Выясним, удовлетворяет ли значение \(x_2=\frac{5}{3} \) условию \(x^2-6x+7 \geq 0 \). Для этого подставим указанное значение в квадратное неравенство. Получим: \(\left(\frac{5}{3} \right)^2 -\frac{5}{3} \cdot 6 + 7 \geq 0 \), т.е. \(\frac{25}{9} -3 \geq 0 \) - неверное неравенство. Значит, \(x_2=\frac{5}{3} \) не является корнем заданного уравнения.

2) Если \(x^2-6x+7 Значение \(x_3=3\) удовлетворяет условию \(x^2-6x+7 Значение \(x_4=\frac{4}{3} \) не удовлетворяет условию \(x^2-6x+7 Итак, заданное уравнение имеет два корня: \(x=6, \; x=3 \).

Второй способ. Если дано уравнение \(|f(x)| = h(x) \), то при \(h(x) \(\left[\begin{array}{l} x^2-6x+7 = \frac{5x-9}{3} \\ x^2-6x+7 = -\frac{5x-9}{3} \end{array}\right. \)
Оба эти уравнения решены выше (при первом способе решения заданного уравнения), их корни таковы: \(6,\; \frac{5}{3},\; 3,\; \frac{4}{3} \). Условию \(\frac{5x-9}{3} \geq 0 \) из этих четырёх значений удовлетворяют лишь два: 6 и 3. Значит, заданное уравнение имеет два корня: \(x=6, \; x=3 \).

Третий способ (графический).
1) Построим график функции \(y = |x^2-6x+7| \). Сначала построим параболу \(y = x^2-6x+7 \). Имеем \(x^2-6x+7 = (x-3)^2-2 \). График функции \(y = (x-3)^2-2 \) можно получить из графика функции \(y = x^2 \) сдвигом его на 3 единицы масштаба вправо (по оси x) и на 2 единицы масштаба вниз (по оси y). Прямая x=3 - ось интересующей нас параболы. В качестве контрольных точек для более точного построения графика удобно взять точку (3; -2) - вершину параболы, точку (0; 7) и симметричную ей относительно оси параболы точку (6; 7).
Чтобы построить теперь график функции \(y = |x^2-6x+7| \), нужно оставить без изменения те части построенной параболы, которые лежат не ниже оси x, а ту часть параболы, которая лежит ниже оси x, отобразить зеркально относительно оси x.
2) Построим график линейной функции \(y = \frac{5x-9}{3} \). В качестве контрольных точек удобно взять точки (0; –3) и (3; 2).

Существенно то, что точка х = 1,8 пересечения прямой с осью абсцисс располагается правее левой точки пересечения параболы с осью абсцисс - это точка \(x=3-\sqrt{2} \) (поскольку \(3-\sqrt{2} 3) Судя по чертежу, графики пересекаются в двух точках - А(3; 2) и В(6; 7). Подставив абсциссы этих точек x = 3 и x = 6 в заданное уравнение, убеждаемся, что и при том и при другом значении получается верное числовое равенство. Значит, наша гипотеза подтвердилась - уравнение имеет два корня: x = 3 и x = 6. Ответ: 3; 6.

Замечание . Графический способ при всём своём изяществе не очень надёжен. В рассмотренном примере он сработал только потому, что корни уравнения - целые числа.

ПРИМЕР 3. Решить уравнение \(|2x-4|+|x+3| = 8 \)

Первый способ
Выражение 2x–4 обращается в 0 в точке х = 2, а выражение х + 3 - в точке х = –3. Эти две точки разбивают числовую прямую на три промежутка: \(x

Рассмотрим первый промежуток: \((-\infty; \; -3) \).
Если x Рассмотрим второй промежуток: \([-3; \; 2) \).
Если \(-3 \leq x Рассмотрим третий промежуток: \(

Пример решен.

Пример 3 . Решить неравенство 6 х 2 - | х | - 2 ≤ 0

Решение .

Число х может быть и положительным числом, и отрицательным, и нулем. Поэтому нам надо учесть все три обстоятельства. Как вы знаете, они учитываются в двух неравенствах: х ≥ 0 и х < 0. При х ≥ 0 мы просто переписываем наше исходное неравенство как есть, только без знака модуля:

6х 2 - х - 2 ≤ 0.

Теперь о втором случае: если х < 0. Модулем отрицательного числа является это же число с противоположным знаком. То есть пишем число под модулем с обратным знаком и опять же освобождаемся от знака модуля:

6х 2 - (-х ) - 2 ≤ 0.

Раскрываем скобки:

6х 2 + х - 2 ≤ 0.

Таким образом, мы получили две системы уравнений:

6х 2 - х - 2 ≤ 0
х ≥ 0

6х 2 + х - 2 ≤ 0
х < 0

Надо решить неравенства в системах - а это значит, надо найти корни двух квадратных уравнений. Для этого приравняем левые части неравенств к нулю.

Начнем с первого:

6х 2 - х - 2 = 0.

Как решается квадратное уравнение - см. раздел «Квадратное уравнение». Мы же сразу назовем ответ:

х 1 = -1/2, х 2 = 2/3.

Из первой системы неравенств мы получаем, что решением исходного неравенства является все множество чисел от -1/2 до 2/3. Пишем объединение решений при х ≥ 0:
[-1/2; 2/3].

Теперь решим второе квадратное уравнение:

6х 2 + х - 2 = 0.

Его корни:

х 1 = -2/3, х 2 = 1/2.

Вывод: при х < 0 корнями исходного неравенства являются также все числа от -2/3 до 1/2.

Объединим два ответа и получим итоговый ответ: решением является все множество чисел от -2/3 до 2/3, включая и эти крайние числа.

Ответ : -2/3 ≤ х ≤ 2/3.

Или: х ∈ [-2/3; 2/3].

Методы (правила) раскрытия неравенств с модулями заключаются в последовательном раскрытии модулей, при этом используют интервалы знакопостоянства подмодульных функций. В конечном варианте получают несколько неравенств из которых и находят интервалы или промежутки, которые удовлетворяют условию задачи.

Перейдем к решению распространенных на практике примеров.

Линейные неравенства с модулями

Под линейными понимаем уравнения, в которых переменная входит в уравнение линейно.

Пример 1. Найти решение неравенства

Решение:
Из условия задачи следует, что модули превращаются в ноль при x=-1 и x=-2. Эти точки разбивают числовую ось на интервалы

В каждом из этих интервалов решим заданное неравенство. Для этого прежде всего составляем графические рисунки областей знакопостоянства подмодульных функций. Их изображают в виде областей с знаками каждой из функций


или интервалов со знаками всех функций.

На первом интервале раскрываем модули

Умножаем обе части на минус единицу, при этом знак в неравенстве поменяется на противоположный. Если Вам до этого правила трудно привыкнуть, то можете перенести каждую из частей за знак, чтобы избавиться минуса. В конечном варианте Вы получите

Пересечением множества x>-3 с областью на которой решали уравнения будет интервал (-3;-2) . Для тех кому легче искать решения графически можете рисовать пересечение этих областей

Общие пересечение областей и будет решением. При строгом неровности края не включают. При нестрогое проверяют подстановкой.

На втором интервале получим

Сечением будет интервал (-2;-5/3). Графически решение будет иметь вид

На третьем интервале получим

Данное условие не дает решений на искомой областе.

Поскольку два найдены решения (-3;-2) и (-2;-5/3) граничат точкой x=-2 , то проверяем и ее.

Таким образом точка x=-2 является решением. Общее решение с учетом этого будет выглядеть (-3;5/3).

Пример 2. Найти решение неравенства
|x-2|-|x-3|>=|x-4|

Решение:
Нулями подмодульных функций будут точки x=2, x=3, x=4 . При значениях аргументов меньше этих точек подмодульные функции отрицательные, а при больших – положительные.

Точки разбивают действительную ось на четыре интервала. Раскрываем модули согласно интервалов знакопостоянства и решаем неравенства.

1) На первом интервале все подмодульные функции отрицательные, поэтому при раскрытии модулей меняем знак на противоположный.

Пересечением найденных значений x с рассматриваемым интервалом будет множество точек

2) На промежутке между точками x=2 и x=3 первая подмодульная функция положительная, вторая и третья – отрицательные. Раскрывая модули, получим

неравенство, которое в пересечении с интервалом, на котором решаем, дает одно решение – x=3.

3) На промежутке между точками x=3 и x=4 первая и вторая подмодульные функции положительные, а третья – отрицательная. На основе этого получим

Это условие показывает, что целый промежуток будет удовлетворять неравенство с модулями.

4) При значениях x>4 все функции знакоположительные. При раскрытии модулей их знак не меняем.

Найденное условие в пересечении с интервалом дает следующее множество решений

Поскольку неравенство решено на всех интервалах, то остается найти общее всех найденных значений x. Решением будут два интервала

На этом пример решен.

Пример 3. Найти решение неравенства
||x-1|-5|>3-2x

Решение:
Имеем неравенство с модулем от модуля. Такие неравенства раскрывают по мере вложенности модулей, начиная с тех, которые размещены глубже.

Подмодульная функция x-1 преобразуется в нуль в точке x=1 . При меньших значениях за 1 она отрицательная и положительная для x>1 . На основе этого раскрываем внутренний модуль и рассматриваем неравенство на каждом из интервалов.

Сначала рассмотрим интервал от минус бесконечности до единицы


Подмодульная функция равна нулю в точке x=-4 . При меньших значениях она знакоположительная, при больших – отрицательная. Раскроем модуль для x<-4:

В пересечении с областью, на которой рассматриваем получим множество решений

Следующим шагом раскрываем модуль на интервале (-4;1)

С учетом области раскрытия модуля получим интервал решений

ЗАПОМНИТЕ: если Вы получили в подобных неровностях с модулями два интервала, граничащих общей точкой, то, как правило, она также является решением.

Для этого стоит лишь провести проверку.

В данном случае подставляем точку x=-4.

Итак x=-4 является решением.
Раскроем внутренний модуль для x>1

Подмодульная функция отрицательная для x<6.
Раскрывая модуль получим

Данное условие в сечении с интервалом (1;6) дает пустое множество решений.

Для x>6 получим неравенство

Также решая получили пустое множество.
Учитывая все выше изложенное, единственным решением неравенства с модулями будет следующий интервал.

Неравенства с модулями, содержащие квадратные уравнения

Пример 4. Найти решение неравенства
|x^2+3x|>=2-x^2

Решение:
Подмодульная функция обращается в нуль в точках x=0, x=-3. Простой подстановкой минус единицы

устанавливаем, что она меньше нуля на интервале (-3;0) и положительная за его пределами.
Раскроем модуль в областях где подмодульная функция положительная

Осталось определить области, где квадратная функция положительная. Для этого определяем корни квадратного уравнения

Для удобства подставляем точку x=0, которая принадлежит интервалу (-2;1/2). Функция отрицательная в этом интервале, значит решением будут следующие множества x

Здесь скобками обозначены края областей с решениями, это сделано сознательно, учитывая следующее правило.

ЗАПОМНИТЕ: Если неравенство с модулями, или простое неравенство является строгим, то края найденных областей не являются решениями, если же неравенства нестроги ()то края являются решениями (обозначают квадратными скобками).

Это правило использует многие преподаватели: если задано строгое неравенство, а Вы при вычислениях запишете в решении квадратную скобку ([,]) – они автоматом посчитают это за неправильный ответ. Также при тестировании, если задано нестрогое неравенство с модулями, то среди решений ищите области с квадратными скобками.

На интервале (-3;0) раскрывая модуль меняем знак функции на противоположный

Учитывая область раскрытия неравенства, решение будет иметь вид

Вместе с предыдущей областью это даст два полуинтервала

Пример 5. Найти решение неравенства
9x^2-|x-3|>=9x-2

Решение:
Задано нестрогое неравенство, подмодульная функция которого равна нулю в точке x=3. При меньших значениях она отрицательная, при больших – положительная. Раскрываем модуль на интервале x<3.

Находим дискриминант уравнения

и корни

Подставляя точку ноль, выясняем, что на промежутке [-1/9;1] квадратичная функция отрицательна, следовательно промежуток является решением. Далее раскрываем модуль при x>3