Обратимые и необратимые химические реакции. Химическое равновесие

Химические реакции бывают обратимые и необратимые.

т.е. если некоторая реакция A + B = C + D необратима, это значит, что обратная реакция C + D = A + B не протекает.

т.е., например, если некая реакция A + B = C + D обратима, это значит, что одновременно протекает как реакция A + B → C + D (прямая), так и реакция С + D → A + B (обратная).

По сути, т.к. протекают как прямая, так и обратная реакции, реагентами (исходными веществами) в случае обратимых реакций могут быть названы как вещества левой части уравнения, так и вещества правой части уравнения. То же самое касается и продуктов.

Для любой обратимой реакции возможна ситуация, когда скорость прямой и обратной реакций равны. Такое состояние называют состоянием равновесия .

В состоянии равновесия концентрации как всех реагентов, так и всех продуктов неизменны. Концентрации продуктов и реагентов в состоянии равновесия называют равновесными концентрациями .

Смещение химического равновесия под действием различных факторов

Вследствие таких внешних воздействий на систему, как изменение температуры, давления или концентрации исходных веществ или продуктов, равновесие системы может быть нарушено. Однако после прекращения этого внешнего воздействия система через некоторое время перейдет в новое состояние равновесия. Такой переход системы из одного равновесного состояния в другое равновесное состояние называют смещением (сдвигом) химического равновесия .

Для того чтобы уметь определять, каким образом сдвигается химическое равновесие при том или ином типе воздействия, удобно пользоваться принципом Ле Шателье:

Если на систему в состоянии равновесия оказать какое-либо внешнее воздействие, то направление смещения химического равновесия будет совпадать с направлением той реакции, которая ослабляет эффект от оказанного воздействия.

Влияние температуры на состояние равновесия

При изменении температуры равновесие любой химической реакции смещается. Связано это с тем, что любая реакция имеет тепловой эффект. При этом тепловые эффекты прямой и обратной реакции всегда прямо противоположны. Т.е. если прямая реакция является экзотермической и протекает с тепловым эффектом, равным +Q, то обратная реакция всегда эндотермична и имеет тепловой эффект, равный –Q.

Таким образом, в соответствии с принципом Ле Шателье, если мы повысим температуру некоторой системы, находящейся в состоянии равновесия, то равновесие сместится в сторону той реакции, при протекании которой температура понижается, т.е. в сторону эндотермической реакции. И аналогично, в случае, если мы понизим температуру системы в состоянии равновесия, равновесие сместится в сторону той реакции, в результате протекания которой температура будет повышаться, т.е. в сторону экзотермической реакции.

Например, рассмотрим следующую обратимую реакцию и укажем, куда сместится ее равновесие при понижении температуры:

Как видно из уравнения выше, прямая реакция является экзотермической, т.е. в результате ее протекания выделяется тепло. Следовательно, обратная реакция будет эндотермической, то есть протекает с поглощением тепла. По условию температуру понижают, следовательно, смещение равновесия будет происходить вправо, т.е. в сторону прямой реакции.

Влияние концентрации на химическое равновесие

Повышение концентрации реагентов в соответствии с принципом Ле Шателье должно приводить к смещению равновесия в сторону той реакции, в результате которой реагенты расходуются, т.е. в сторону прямой реакции.

И наоборот, если концентрацию реагентов понижают, то равновесие будет смещаться в сторону той реакции, в результате которой реагенты образуются, т.е. сторону обратной реакции (←).

Аналогичным образом влияет и изменение концентрации продуктов реакции. Если повысить концентрацию продуктов, равновесие будет смещаться в сторону той реакции, в результате которой продукты расходуются, т.е. в сторону обратной реакции (←). Если же концентрацию продуктов, наоборот, понизить, то равновесие сместится в сторону прямой реакции (→), для того чтобы концентрация продуктов возросла.

Влияние давления на химическое равновесие

В отличие от температуры и концентрации, изменение давления оказывает влияние на состояние равновесия не каждой реакции. Для того чтобы изменение давления приводило к смещению химического равновесия, суммы коэффициентов перед газообразными веществами в левой и в правой частях уравнения должны быть разными.

Т.е. из двух реакций:

изменение давления способно повлиять на состояние равновесия только в случае второй реакции. Поскольку сумма коэффициентов перед формулами газообразных веществ в случае первого уравнения слева и справа одинаковая (равна 2), а в случае второго уравнения – различна (4 слева и 2 справа).

Отсюда, в частности, следует, что если среди и реагентов, и продуктов отсутствуют газообразные вещества, то изменение давления никак не повлияет на текущее состояние равновесия. Например, давление никак не повлияет на состояние равновесия реакции:

Если же слева и справа количество газообразных веществ различается, то повышение давления будет приводить к смещению равновесия в сторону той реакции, при протекании которой объем газов уменьшается, а понижение давления – в сторону той реакции, в результате которой объем газов увеличивается.

Влияние катализатора на химическое равновесие

Поскольку катализатор в равной мере ускоряет как прямую, так и обратную реакции, то его наличие или отсутствие никак не влияет на состояние равновесия.

Единственное, на что может повлиять катализатор, — это на скорость перехода системы из неравновесного состояния в равновесное.

Воздействие всех указанных выше факторов на химическое равновесие сведено ниже в таблицу-шпаргалку, в которую поначалу можно подглядывать при выполнении заданий на равновесия . Однако же пользоваться на экзамене ей не будет возможности, поэтому после разбора нескольких примеров с ее помощью, ее следует выучить и тренироваться решать задания на равновесия, уже не подглядывая в нее:

Обозначения: T – температура, p – давление, с – концентрация, — повышение, ↓ — понижение

Катализатор

T

Т — равновесие смещается в сторону эндотермической реакции
↓Т — равновесие смещается в сторону экзотермической реакции

p

p — равновесие смещается в сторону реакции с меньшей суммой коэффициентов перед газообразными веществами
↓p — равновесие смещается в сторону реакции с большей суммой коэффициентов перед газообразными веществами

c

c (реагента) – равновесие смещается в сторону прямой реакции (вправо)
↓c (реагента) – равновесие смещается в сторону обратной реакции (влево)
c (продукта) – равновесие смещается в сторону обратной реакции (влево)
↓c (продукта) – равновесие смещается в сторону прямой реакции (вправо)
На равновесие не влияет!!!

Одной из важнейших характеристик химической реакции является глубина (степень) превращения, показывающая, насколько исходные вещества превращаются в продукты реакции. Чем она больше, тем экономичнее можно проводить процесс. Глубина превращения, помимо других факторов, зависит от обратимости реакции.

Обратимые реакции, в отличие от необратимых , протекают не до конца: ни одно из реагирующих веществ не расходуется полностью. Одновременно идет взаимодействие продуктов реакции с образованием исходных веществ.

Рассмотрим примеры:

1) в замкнутый сосуд при определенной температуре введены равные объемы газообразного йода и водорода. Если столкновения молекул этих веществ происходят с нужной ориентацией и достаточной энергией, то химические связи могут перестроиться с образованием промежуточного соединения (активированный комплекс, см. п.1.3.1). Дальнейшая перестройка связей может привести к распаду промежуточного соединения на две молекулы йодистого водорода. Уравнение реакции:

H 2 + I 2 ® 2HI

Но молекулы йодистого водорода также будут беспорядочно сталкиваться с молекулами водорода, йода и между собой. При столкновении молекул HI ничто не помешает образоваться промежуточному соединению, которое затем может разложиться на йод и водород. Этот процесс выражается уравнением:

2HI ® H 2 + I 2

Таким образом, в этой системе одновременно будут протекать две реакции - образование йодистого водорода и его разложение. Их можно выразить одним общим уравнением

H 2 + I 2 « 2HI

Обратимость процесса показывает знак «.

Реакция, направленная в данном случае в сторону образования йодистого водорода, называется прямой, а противоположная - обратной.

2) если смешать два моль диоксида серы с одним моль кислорода, создать в системе условия, благоприятствующие протеканию реакции, и по истечении времени провести анализ газовой смеси, то результаты покажут, что в системе будут присутствовать как SO 3 – продукт реакции, так и исходные вещества – SO 2 и O 2 . Если в те же условия в качестве исходного вещества поместить оксид серы (+6), то можно будет обнаружить, что часть его разложится на кислород и оксид серы (+4), причем конечное соотношение между количествами всех трех веществ будет такое же, как и в том случае, когда исходили из смеси диоксида серы и кислорода.

Таким образом, взаимодействие диоксида серы с кислородом также является одним из примеров обратимой химической реакции и выражается уравнением

2SO 2 + O 2 « 2SO 3

3) взаимодействие железа с соляной кислотой протекает согласно уравнению:

Fe + 2HCL ® FeCL 2 + H 2

При достаточном количестве соляной кислоты реакция закончится, когда

все железо израсходуется. Кроме того, если попытаться провести эту реакцию в обратном направлении – пропускать водород через раствор хлорида железа, то металлического железа и соляной кислоты не получится – эта реакция не может идти в обратном направлении. Таким образом, взаимодействие железа с соляной кислотой – необратимая реакция.

Однако, следует иметь ввиду, что теоретически любой необратимый процесс можно представить протекающим в определенных условиях обратимо, т.е. в принципе все реакции можно считать обратимыми. Но очень часто одна из реакций явно преобладает. Это бывает в тех случаях, когда продукты взаимодействия удаляются из сферы реакции: выпадает осадок, выделяется газ, при ионообменных реакциях образуются практически недиссоциирующие продукты; или же когда за счет явного избытка исходных веществ противоположный процесс практически подавляется. Таким образом, естественное или искусственное исключение возможности протекания обратной реакции позволяет довести процесс практически до конца.

Примерами таких реакций могут служить взаимодействие хлорида натрия с нитратом серебра в растворе

NaCL + AgNO 3 ® AgCl¯ + NaNO 3 ,

бромида меди с аммиаком

CuBr 2 + 4NH 3 ® Br 2 ,

нейтрализация хлороводородной кислоты раствором едкого натра

HCl + NaOH ® NaCl + H 2 O.

Это все примеры лишь практически необратимых процессов, так как и хлорид серебра несколько растворим, и комплексный катион 2+ не абсолютно устойчив, и вода диссоциирует, хотя и в крайне незначительной степени.

Химические реакции, протекающие в одном направлении, называют необратимыми .

Большинство химических процессов являются обратимыми . Это значит, что при одних и тех же условиях протекают и прямая, и обратная реакции (особенно если речь идет о замкнутых системах).

Например:

а) реакция

в открытой системе необратима ;

б) эта же реакция

в замкнутой системе обратима .

Химическое равновесие

Рассмотрим более подробно процессы, протека­ющие при обратимых реакциях, например, для ус­ловной реакции:

На основании закона действующих масс ско­рость прямой реакции :

Так как со временем концентрации веществ А и В уменьшаются, то и скорость прямой реакции тоже уменьшается.

Появление продуктов реакции означает воз­можность обратной реакции, причем со временем концентрации веществ С и D увеличиваются, а зна­чит, увеличивается и скорость обратной реакции .

Рано или поздно будет достигнуто состояние, при котором скорости прямой и обратной реакций станут равными = .

Состояние системы, при котором скорость прямой ре­акции равна скорости обрат­ной реакции, называют хи­мическим равновесием .

При этом концентрации реагирующих веществ и про­дуктов реакции остаются без изменения. Их называют рав­новесными концентрациями. На макроуровне ка­жется, что в целом ничего не изменяется. Но на самом деле и прямой, и обратный процессы про­должают идти, но с равной скоростью. Поэтому такое равновесие в системе называют подвижным и динамическим.

Обозначим равновесные концентрации ве­ществ [A], [B], [C], [D]. Тогда так как = , k 1 [A] α [B] β = k 2 [C] γ [D] δ , откуда

где α, β, γ, δ - показатели степеней, равные коэффициентам в обратимой реакции ; К равн - констан­та химического равновесия .

Полученное выражение количественно описы­вает состояние равновесия и представляет собой математическое выражение закона действующих масс для равновесных систем.

При неизменной температуре константа равно­весия - величина постоянная для данной обрати­мой реакции . Она показывает соотношение между концентрациями продуктов реакции (числитель) и исходных веществ (знаменатель), которое уста­навливается при равновесии.

Константы равновесия рассчитывают из опыт­ных данных, определяя равновесные концентра­ции исходных веществ и продуктов реакции при определенной температуре.

Значение константы равновесия характеризует выход продуктов реакции, полноту ее протекания. Если получают К » 1, это означает, что при равновесии [C] γ [D] δ » [A] α [B] β , т. е. концентра­ции продуктов реакции преобладают над концен­трациями исходных веществ, а выход продуктов реакции большой.

При К равн « 1 соответственно выход продуктов реакции мал. Например, для реакции гидролиза этилового эфира уксусной кислоты

константа равновесия:

при 20 °C имеет значение 0,28 (то есть меньше 1).

Это означает, что значительная часть эфира не ги­дролизовалась.

В случае гетерогенных реакций в выражение константы равновесия входят концентрации толь­ко тех веществ, которые находятся в газовой или жидкой фазе. Например, для реакции

Константы равновесия выражается так:

Значение константы равновесия зависит от при­роды реагирующих веществ и температуры.

От присутствия катализатора константа не за­висит , поскольку он изменяет энергию активации и прямой, и обратной реакции на одну и ту же ве­личину. Катализатор может лишь ускорить насту­пление равновесия, не влияя на значение констан­ты равновесия.

Состояние равновесия сохраняется сколь угодно долго при неизменных внешних условиях: темпе­ратуре, концентрации исходных веществ, давлении (если в реакции участвуют или образуются газы).

Изменяя эти условия, можно перевести систему из одного равновесного состояния в другое, отвеча­ющее новым условиям. Такой переход называют смещением или сдвигом равновесия .

Рассмотрим разные способы смещения равно­весия на примере реакции взаимодействия азота и водорода с образованием аммиака:

Влияние изменения концентрации веществ

При добавлении в реакционную смесь азота N 2 и водорода H 2 увеличивается концентрация этих газов, а значит, увеличивается скорость прямой реакции . Равновесие смещается вправо, в сторону продукта реакции, то есть в сторону аммиака NH 3 .

N 2 +3H 2 → 2NH 3

Этот же вывод можно сделать, анализируя вы­ражение для константы равновесия. При увеличе­нии концентрации азота и водорода знаменатель увеличивается, а так как K равн. - величина постоянная, должен увеличиваться числитель. Таким образом, в реакционной смеси увеличится количе­ство продукта реакции NH 3 .

Увеличение же концентрации продукта реак­ции аммиака NH 3 приведет к смещению равно­весия влево, в сторону образования исходных ве­ществ. Этот вывод можно сделать на основании аналогичных рассуждений.

Влияние изменения давления

Изменение давления оказывает влияние только на те системы, где хотя бы одно из веществ нахо­дится в газообразном состоянии. При увеличении давления уменьшается объем газов, а значит, уве­личивается их концентрация.

Предположим, что давление в замкнутой си­стеме повысили, например, в 2 раза. Это значит, что концентрации всех газообразных веществ (N 2 , H 2 , NH 3) в рассматриваемой реакции возрастут в 2 раза. В этом случае числитель в выражении для К равн увеличится в 4 раза, а знаменатель - в 16 раз, т. е. равновесие нарушится. Для его вос­становления должна увеличиться концентрация аммиака и должны уменьшиться концентрации азота и водорода. Равновесие сместится вправо. Изменение давления практически не сказывается на объеме жидких и твердых тел, т. е. не изме­няет их концентрацию. Следовательно, состояние химического равновесия реакций, в которых не участвуют газы, не зависит от давления .

Влияние изменения температуры

При повышении темпера­туры скорости всех реакций (экзо- и эндотермических) увеличиваются. Причем по­вышение температуры боль­ше сказывается на скорости тех реакций, которые имеют большую энергию активации, а значит, эндотермических .

Таким образом, скорость обратной реакции (эндотермической) увеличивается сильнее, чем скорость прямой. Равновесие сместится в сторо­ну процесса, сопровождающегося поглощением энергии.

Направление смещения равновесия можно предсказать, пользуясь принципом Ле Шателье :

Если на систему, находящуюся в равновесии, оказывается внешнее воздействие (изменяется концентрация, давление, температура), то равновесие смещается в ту сторону, которая осла­бляет данное воздействие.

Таким образом:

При увеличении концентрации реагирующих ве­ществ химическое равновесие системы смещает­ся в сторону образования продуктов реакции;

При увеличении концентрации продуктов реак­ции химическое равновесие системы смещается в сторону образования исходных веществ;

При увеличении давления химическое равнове­сие системы смещается в сторону той реакции, при которой объем образующихся газообразных веществ меньше;

При повышении температуры химическое рав­новесие системы смещается в сторону эндотер­мической реакции;

При понижении температуры - в сторону экзо­термического процесса.

Принцип Ле Шателье применим не только к хи­мическим реакциям, но и ко многим другим про­цессам: к испарению, конденсации, плавлению, кри­сталлизации и др. При производстве важнейших химических продуктов принцип Ле Шателье и рас­четы, вытекающие из закона действующих масс, дают возможность находить такие условия для про­ведения химических процессов, которые обеспечи­вают максимальный выход желаемого вещества.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Все химические реакции делятся на два типа: обратимые и необратимые.

Необратимыми называются реакции, которые протекают только в одном направлении, т. е. продукты этих реакций не взаимодействуют друг с другом с образованием исходных веществ.

Необратимая реакция заканчивается тогда, когда полностью расходуется хотя бы одно из исходных веществ. Необратимыми являются реакции горения; многие реакции термического разложения сложных веществ; большинство реакций, в результате которых образуются осадки или выделяются газообразные вещества, и др. Например:

C 2 H 5 OH + 3O 2 → 2CO 2 + 3H 2 O

2KMnO 4 = K 2 MnO 4 + MnO 2 + O 2

BaCl 2 + H 2 SO 4 = BaSO 4 ↓ + 2HCl

Обратимыми называются реакции, которые одновременно протекают в прямом и в обратом направлениях:

В уравнениях обратимых реакций используется знак обратимости .

Примером обратимой реакции является синтез йодоводорода из и :

Через некоторое время после начала химической реакции в газовой смеси можно обнаружить не только конечный продукт реакции НI, но и исходные вещества -H 2 и I 2 . Как бы долго ни продолжалась реакция, в реакционной смеси при 350 o С всегда будет содержаться приблизительно 80% HI,10% Н 2 и 10% I 2 . Если в качестве исходного вещества взять НI и нагреть его до той же температуры, то можно обнаружить, что через некоторое время соотношение между количествами всех трех веществ будет таким же. Таким образом, при образовании йодоводорода из водорода и йода одновременно осуществляются прямая и обратная реакции.

Если в качестве исходных веществ взяты водород и йод в концентрациях и , то скорость прямой реакции в начальный момент времени была равна: v пр = k пр ∙ . Скорость обратной реакции v обр = k обр 2 в начальный момент времени равна нулю, так как йодоводород в реакционной смеси отсутствует ( = 0). Постепенно скорость прямой реакции уменьшается, так как водород и йод вступают в реакцию и их концентрации понижаются. При этом скорость обратной реакции увеличивается, потому что концентрация образующегося йодоводорода постепенно возрастает. Когда скорости прямой и обратной реакций станут одинаковыми, наступает химическое равновесие. В состоянии равновесия за определенный промежуток времени образуется столько же молекул НI, сколько их распадается на Н 2 и I 2 .

Состояние обратимой реакции, при котором скорость прямой реакции равна скорости обратной реакции, называется химическим равновесием .

Химическое равновесие является динамическим равновесием. В равновесном состоянии продолжают протекать и прямая, и обратная реакции, но так как скорости их равны, концентрации всех веществ в реакционной системе не изменяются. Эти концентрации называются равновесными концентрациями.

Смещение химического равновесия

Принцип Ле-Шателье

Химическое равновесие является подвижным. При изменении внешних условий скорости прямой и обратной реакций могут стать неодинаковыми, что обусловливает смещение (сдвиг) равновесия.

Если в результате внешнего воздействия скорость прямой реакции становится больше скорости обратной реакции, то говорят о смещении равновесия вправо (в сторону прямой реакции). Если скорость обратной реакции становится больше скорости прямой реакции, то говорят о смещении равновесия влево (в сторону обратной реакции). Результатом смещения равновесия является переход системы в новое равновесное состояние с другим соотношением концентраций реагирующих веществ.

Направление смещения равновесия определяется принципом, который был сформулирован французским ученым Ле-Шателье (1884 г):

Если на равновесную систему оказывается внешнее воздействие, то равновесие смещается в сторону той реакции (прямой или обратной), которая противодействует этому воздействию.

Важнейшими внешними факторами, которые могут приводить к смещению химического равновесия, являются:

а) концентрации реагирующих веществ;

б) температура;

в) давление.

Влияние концентрации реагирующих веществ

Если в равновесную систему вводится какое-либо из участвующих в реакции веществ, то равновесие смещается в сторону той реакции, при протекании которой данное вещество расходуется. Если из равновесной системы выводится какое-либо вещество, то равновесие смещается в сторону той реакции, при протекании которой данное вещество образуется.

Например, рассмотрим, какие вещества следует вводить и какие вещества выводить из равновесной системы для смещения обратимой реакции синтеза вправо:

Для смещения равновесия вправо (в сторону прямой реакции образования аммиака) необходимо в равновесную смесь вводить и водород (т. е. увеличивать их концентрации) и выводить из равновесной смеси аммиак (т. е. уменьшать его концентрацию).

Влияние температуры

Прямая и обратная реакции имеют противоположные тепловые эффекты: если прямая реакция экзотермическая, то обратная реакция эндотермическая (и наоборот). При нагревании системы (т. е. повышении ее температуры) равновесие смещается в сторону эндотермической реакции; при охлаждении (понижении температуры) равновесие смещается в сторону экзотермической реакции.

Например, реакция синтеза аммиака является экзотермической: N 2 (г) + 3H 2 (г) → 2NH 3 (г) + 92кДж, а реакция разложения аммиака (обратная реакция) является эндотермической: 2NH 3 (г)→ N 2 (г) + 3H 2 (г) — 92кДж. Поэтому повышение температуры смещает равновесие в сторону обратной реакции разложения аммиака.

Влияние давления

Давление влияет на равновесие реакций, в которых принимают участие газообразные вещества. Если внешнее давление повышается, то равновесие смещается в сторону той реакции, при протекании которой число молекул газа уменьшается. И наоборот, равновесие смещается в сторону образования большего числа газообразных молекул при понижении внешнего давления. Если реакция протекает без изменения числа молекул газообразных веществ, то давление не влияет на равновесие в данной системе.

Например, для увеличения выхода аммиака (смещение вправо) необходимо повышать давление в системе обратимой реакции , так как при протекании прямой реакции число газообразных молекул уменьшается (из четырех молекул газов азота и водорода образуются две молекулы газа аммиака).

Темы кодификатора : обратимые и необратимые реакции. Химическое равновесие. Смещение химического равновесия под действием различных факторов.

По возможности протекания обратной реакции химические реакции делят на обратимые и необратимые.

Обратимые химические реакции — это реакции, продукты которых при данных условиях могут взаимодействовать друг с другом.

Необратимые реакции — это реакции, продукты которых при данных условиях взаимодействовать друг с другом не могут.

Более подробно про классификацию химических реакций можно прочитать .

Вероятность взаимодействия продуктов зависит от условий проведения процесса.

Так, если система открытая , т.е. обменивается с окружающей средой и веществом, и энергией, то химические реакции, в которых, например, образуются газы, будут необратимыми. Например , при прокаливании твердого гидрокарбоната натрия:

2NaHCO 3 → Na 2 CO 3 + CO 2 + H 2 O

будет выделяться газообразный углекислый газ и улетучиваться из зоны проведения реакции. Следовательно, такая реакция будет необратимой при данных условиях. Если же рассмотреть замкнутую систему , которая не может обмениваться веществом с окружающей средой (например, закрытый ящик, в котором происходит реакция), то углекислый газ не сможет улететь из зоны проведения реакции, и будет взаимодействовать с водой и карбонатом натрия, то реакция будет обратимой при данных условиях:

2NaHCO 3 ⇔ Na 2 CO 3 + CO 2 + H 2 O

Рассмотрим обратимые реакции . Пусть обратимая реакция протекает по схеме:

aA + bB = cC + dD

Скорость прямой реакции по закону действующих масс определяется выражением: v 1 =k 1 ·C A a ·C B b , скорость обратной реакции: v 2 =k 2 ·C С с ·C D d . Если в начальный момент реакции в системе нет веществ C и D, то сталкиваются и взаимодействуют преимущественно частицы A и B, и идет преимущественно прямая реакция. Постепенно концентрация частиц C и D также начнет повышаться, следовательно, скорость обратной реакции будет расти. В какой-то момент скорость прямой реакции станет равна скорости обратной реакции . Это состояние и называют химическим равновесием .

Таким образом, химическое равновесие — это такое состояние системы, при котором скорости прямой и обратной реакции равны .

Т.к. скорости прямо и обратной реакции равны, скорость образования веществ равна скорости их расходования, и текущие концентрации веществ не изменяются . Такие концентрации называют равновесными .

Обратите внимание, при равновесии идет и прямая, и обратная реакции , то есть реагенты взаимодействуют друг с другом, но и продукты взаимодействуют с такой же скоростью. При этом внешние факторы могут воздействовать и смещать химическое равновесие в ту или иную сторону. Поэтому химическое равновесие называют подвижным, или динамическим.

Исследования в области подвижного равновесия начались еще в XIX веке. В трудах Анри Ле-Шателье были заложены основы теории, которые позже обобщил ученый Карл Браун. Принцип подвижного равновесия, или принцип Ле-Шателье-Брауна, гласит:

Если на систему, находящуюся в состоянии равновесия, воздействовать внешним фактором, который изменяет какое-либо из условий равновесия, то в системе усиливаются процессы, направленные на компенсацию внешнего воздействия.

Иными словами: при внешнем воздействии на систему равновесие сместится так, чтобы компенсировать это внешнее воздействие.

Этот принцип, что очень важно, работает для любых равновесных явлений (не только химических реакций). Однако мы сейчас рассмотрим его применительно к химическим взаимодействиям. В случае химических реакций внешнее воздействие приводит к изменению равновесных концентраций веществ.

На химические реакции в состоянии равновесия могут воздействовать три основных фактора — температура, давление и концентрации реагентов или продуктов.

1. Как известно, химические реакции сопровождаются тепловым эффектом. Если прямая реакция идет с выделением теплоты (экзотермическая, или +Q), то обратная — с поглощением теплоты (эндотермическая, или -Q), и наоборот. Если повышать температуру в системе, равновесие сместится так, чтобы это повышение компенсировать. Логично, что при экзотермической реакции повышение температуры компенсировать не получится. Таким образом, при повышении температуры равновесие в системе смещается в сторону поглощения теплоты, т.е. в сторону эндотермических реакций (-Q); при понижении температуры — в сторону экзотермической реакции (+Q).

2. В случае равновесных реакций, когда хотя бы одно из веществ находится в газовой фазе, на равновесие также существенно влияет изменение давления в системе. При повышении давления химическая система пытается компенсировать это воздействие, и увеличивает скорость реакции, в которой количество газообразных веществ уменьшается. При понижении давления система увеличивает скорость реакции, в которой образуется больше молекул газообразных веществ. Таким образом: при увеличении давления равновесие смещается в сторону уменьшения числа молекул газов, при уменьшении давления — в сторону увеличения числа молекул газов .

Обратите внимание! На системы, где число молекул газов-реагентов и продуктов одинаково, давление не оказывает воздействие! Также изменение давления практически не влияет на равновесие в растворах, т.е. на реакции, где газов нет.

3. Также на равновесие в химических системах влияет изменение концентрации реагирующих веществ и продуктов. При повышении концентрации реагентов система пытается их израсходовать, и увеличивает скорость прямой реакции. При понижении концентрации реагентов система пытается их наработать, и увеличивается скорость обратной реакции. При повышении концентрации продуктов система пытается их также израсходовать, и увеличивает скорость обратной реакции. При понижении концентрации продуктов химическая система пувеличивает скорость их образования, т.е. скорость прямой реакции.

Если в химической системе увеличивается скорость прямой реакции вправо , в сторону образования продуктов и расходования реагентов . Если увеличивается скорость обратной реакции , мы говорим, что равновесие сместилось влево , в сторону расходования продуктов и увеличения концентрации реагентов .

Например , в реакции синтеза аммиака:

N 2 + 3H 2 = 2NH 3 + Q

повышение давления приводит к увеличению скорости реакции, в которой образуется меньшее число молекул газов, т.е. прямой реакции (число молекул газов-реагентов равно 4, число молекул газов в продуктах равно 2). При повышении давления равновесие смещается вправо, в сторону продуктов. При повышении температуры равновесие сместится в сторну эндотермической реакции , т.е. влево, в сторону реагентов. Увеличение концентрации азота или водорода сместит равновесие в сторону их расходования, т.е. вправо, в сторону продуктов.

Катализатор не влияет на равновесие, т.к. ускоряет и прямую, и обратную реакции.