Соотношения неопределённости Гейзенберга. Принцип неопределенности гейзенберга в квантовой механике

В квантовой механике состояние частицы определяется заданием значений координат, импульса, энергии и других подобных величин, которые называются динамическими переменными .

Строго говоря, микрообъекту не могут быть приписаны динамические переменные. Однако информацию о микрообъекте мы получаем в результате их взаимодействия с макроприборами. Поэтому необходимо результаты измерений выражаются в динамических переменных. Поэтому, например, говорят о состоянии электрона с определенной энергией.

Своеобразие свойств микрообъектов заключается в том, что не для всех переменных получаются при изменениях определенные значения. Так в мысленном эксперименте мы видели, что при попытке уменьшить неопределенность координаты электронов в пучке путем уменьшения ширины щели приводит к появлению у них неопределенной составляющей импульса в направлении соответствующей координаты. Между неопределенностями координаты и импульса имеет место соотношение

(33.4)

Аналогичное соотношение имеет место для других осей координат и соответствующих проекций импульса, а также для ряда других пар величин. В квантовой механике такие пары величин называются канонически сопряженными . Обозначив канонически сопряженными величины А и В , можно записать:

(33.5)

Соотношение (33.5) было установлено в 1927 году Гейзенбергом и называется соотношением неопределенности .

Само утверждение о том, что произведение неопределенностей значений двух сопряженных переменных не может быть по порядку величины меньше принципом неопределенности Гейзенберга . Принцип неопределенности Гейзенберга является одним из фундаментальных положений квантовой механики.

Важно отметить, что канонически сопряженными являются энергия и время, и справедливо соотношение:

(33.6) в частности, означает, что для измерения энергии с погрешностью не более (порядка) необходимо затратить время не менее . С другой стороны, если известно, что в некотором состоянии частица не может находиться более , то можно утверждать что энергия частицы в этом состоянии не может быть определена с погрешностью менее



Соотношение неопределенностей определяет возможность использования классических понятий для описания микрообъектов. Очевидно, что чем больше масса частицы, тем меньше произведение неопределенностей ее координаты и скорости . Для частиц с размерами порядка микрометра неопределенности координаты и скорости становятся столь малы, что оказываются за пределами точности измерений, и движение таких частиц можно рассматривать происходящим по определенной траектории.

При определённых условиях даже движение микрочастицы может рассматриваться, как происходящее по траектории. Например, движение электрона в ЭЛТ.

Соотношение неопределенностей, в частности, позволяет объяснить, почему электрон в атоме не падает на ядро. При падении электрона на ядро его координаты и импульс приняли бы одновременно определенные, а именно нулевые значения, что запрещено принципом неопределенности. Важно отметить, что принцип неопределенности – это базовое положение, которое определяет невозможность падения электрона на ядро наряду с рядом других следствий без принятия дополнительных постулатов.

Оценим на основе соотношения неопределенностей минимальные размеры атома водорода. Формально, с классической точки зрения, энергия должна быть минимальна при падении электрона на ядро, т.е. при и . Поэтому для оценки минимальной размеров атома водорода можно считать что, что его координата и импульс совпадают с неопределенностями этих величин: . Тогда они должны быть связаны соотношением:

Энергия электрона в атоме водорода выражается формулой:

(33.8)

Выразим импульс из (33.7) и подставим в (33.8):

. (33.9)

Найдем радиус орбиты , при котором энергия минимальна. Дифференцируя (33.9) и приравнивая производную нулю, получаем:

. (33.10)

Поэтому радиус расстояние от ядра, на котором электрон имеет минимальную энергию в атоме водорода, можно оценить по соотношению

Это значение совпадает с радиусом воровской орбиты.

Подставив найденное расстояние в формулу (33.9), получим выражение для минимальной энергии электрона в атоме водорода:

Это выражение также совпадает с энергией электрона на орбите минимального радиуса в теории Бора.

Уравнение Шрёдингера

Поскольку, по идее Де-Бройля, движение микрочастицы связано с некоторым волновым процессом, Шрёдингер сопоставил ее движению комплексную функцию координат и времени, которую он назвал волновой функцией и обозначил . Часто это функцию так и называют – «пси-функция». В 1926 году Шрёдингер сформулировал уравнение, которому должна удовлетворять :

. (33.13)

В этом уравнении:

m – масса частицы;

;

– функция координат и времени, градиент, который с обратным знаком определяет силу, действующую на частицу.

Уравнение (33.13) называется уравнением Шрёдингера . Отметим, что уравнение Шрёдингера не выводится из каких-либо дополнительных соображений. Фактически оно является постулатом квантовой механики, сформулированным на основе аналогии уравнений оптики и аналитической механики. Фактическим обоснованием уравнения (33.13) Является соответствие результатов, полученных на его основе экспериментальным фактам.

Решая (33.13), получают вид волновой функции, описывающей рассматриваемую физическую систему, например, состояния электронов в атомах. Конкретный вид - функции определяется характером силового поля, в котором находится частица, т.е. функцией .

Если силовое поле стационарно , то не зависит явно от времени и имеет смысл потенциальной энергии . В этом случае решение уравнения Шрёдингера распадается на два множителя, один из которых зависит только от координат, другой – только от времени:

где – полная энергия системы, которая в случае стационарного поля остаётся постоянной.

Подставив (33.14) в (33.13), получим:

После сокращения на ненулевой множитель получаем уравнение Шредингера, справедливое в указанных ограничениях:

. (33.15)

Уравнение (33.15) называется уравнением Шрёдингера для стационарных состояний , которое обычно записывают в виде.

Принцип неопределенности Гейзенберга - в так называют закон, который устанавливает ограничение на точность (почти)одновременного переменных состояния, например положения и частицы. Кроме того, он точно определяет меру неопределенности, давая нижний (ненулевой) предел для произведения дисперсий измерений.

Рассмотрим, например, серию следующих экспериментов: путем применения , частица приводится в определенное чистое состояние, после чего выполняются два последовательных измерения. Первое определяет положение частицы, а второе, сразу после этого, её импульс. Предположим также, что процесс измерения (применения оператора) таков, что в каждом испытании первое измерение даёт то же самое значение, или по крайней мере набор значений с очень маленькой дисперсией d p около значения p. Тогда второе измерение даст распределение значений, дисперсия которого d q будет обратно пропорциональна d p .

В терминах квантовой механики, процедура применения оператора привела частицу в смешанное состояние с определенной координатой. Любое измерение импульса частицы обязательно приведет к дисперсии значений при повторных измерениях. Кроме того, если после измерения импульса мы измерим координату, то тоже получим дисперсию значений.

В более общем смысле, соотношение неопределенности возникает между любыми переменными состояния, определяемыми некомутирующими операторами. Это - один из краеугольных камней , который был открыт в г.

Краткий обзор

Принцип неопределенности в иногда объясняется таким образом, что измерение координаты обязательно влияет на импульс частицы. По-видимому, сам Гейзенберг предложил это объяснение, по крайней мере первоначально. То, что влияние измерения на импульс несущественно, может быть показано следующим образом: рассмотрим ансамбль (невзаимодействующих) частиц приготовленных в одном и том же самом состоянии; для каждой частицы в ансамбле мы измеряем либо импульс либо координату, но не обе величины. В результате измерения мы получим, что значения распределены с некоторой вероятностью и для дисперсий d p и d q верно отношение неопределенности.

Отношения неопределенности Гейзенберга - это теоретический предел точности любых измерений. Они справедливы для так называемых идеальных измерений, иногда называемых измерениями фон Неймана. Они тем более справедливы для неидеальных измерений или измерений .

Соответственно, любая частица (в общем смысле, например несущая дискретный ) не может быть описана одновременно как «классическая точечная частица» и как . (Сам факт того, что какое-либо из этих описаний может быть справедливо, по крайней мере в отдельных случаях, называют корпускулярно-волновым дуализмом). Принцип неопределенности, в виде, первоначально предложенном Гейзенбергом, верен в случае, когда ни одно из этих двух описаний не является полностью и исключительно подходящим, например частица в коробке с определенным значением энергии; то есть для систем, которые не характеризуются ни каким-либо определенным «положением» (какое-либо определенное значение расстояния от потенциальной стенки), ни каким-либо определенным значением импульса (включая его направление).

Существует точная, количественная аналогия между отношениями неопределенности Гейзенберга и свойствами волн или сигналов. Рассмотрим переменный во времени сигнал, например звуковую волну. Бессмысленно говорить о частотном спектре сигнала в какой-либо момент времени. Для точного определения частоты необходимо наблюдать за сигналом в течение некоторого времени, таким образом теряя точность определения времени. Другими словами, звук не может иметь и точного значения времени, как например короткий импульс, и точного значения частоты, как например в непрерывном чистом тоне. Временно́е положение и частота волны во времени походят на координату и импульс частицы в пространстве.

Определение

Если приготовлены несколько идентичных копий системы в данном состоянии, то измеренные значения координаты и импульса будут подчиняться определенному - это фундаментальный постулат квантовой механики. Измеряя величину Δx координаты и стандартного отклонения Δp импульса, мы найдем что:

\Delta x \Delta p \ge \frac{\hbar}{2} ,

Другие характеристики

Было развито множество дополнительных характеристик, включая описанные ниже:

Выражение конечного доступного количества информации Фишера

Принцип неопределенности альтернативно выводится как выражение неравенства Крамера-Рао в классической теории измерений. В случае когда измеряется положение частицы. Средне-квадратичный импульс частицы входит в неравенство как информация Фишера. См. также полная физическая информация.

Обобщенный принцип неопределенности

Принцип неопределенности не относится только к координате и импульсу. В своей общей форме, он применим к каждой паре сопряженных переменных . В общем случае, и в отличие от случая координаты и импульса, обсужденного выше, нижняя граница произведения неопределенностей двух сопряженных переменных зависит от состояния системы. Принцип неопределенности становится тогда теоремой в теории операторов, которую мы здесь приведем

Теорема . Для любых самосопряженных операторов: A :H H и B :H H , и любого элемента x из H такого, что A B x и B A x оба определены (т.е., в частности, A x и B x также определены), имеем:

\langle BAx|x \rangle \langle x|BAx \rangle = \langle ABx|x \rangle \langle x|ABx \rangle = \left|\langle Bx|Ax\rangle\right|^2\leq \|Ax\|^2\|Bx\|^2

Следовательно, верна следующая общая форма принципа неопределенности , впервые выведенная в г. Говард Перси Робертсоном и (независимо) :

\frac{1}{4} |\langle(AB-BA)x|x\rangle|^2\leq\|Ax\|^2\|Bx\|^2.

Это неравенство называют отношением Робертсона-Шредингера.

Оператор AB -BA называют коммутатором A и B и обозначют как [A ,B ]. Он определен для тех x , для которых определены оба ABx и BAx .

Из отношения Робертсона-Шредингера немедленно следует отношение неопределенности Гейзенберга :

Предположим, A и B - две переменные состояния, которые связаны с самосопряженными (и что важно - симметричными) операторами. Если AB ψ и BA ψ определены, тогда:

\Delta_{\psi}A\,\Delta_{\psi}B\ge\frac{1}{2}\left|\left\langle\left\right\rangle_\psi\right| , \left\langle X\right\rangle_\psi =\left\langle\psi|X\psi\right\rangle

среднее значение оператора переменной X в состоянии ψ системы, и:

\Delta_{\psi}X=\sqrt{\langle{X}^2\rangle_\psi-\langle{X}\rangle_\psi^2}

Возможно также существование двух некоммутирующих самосопряженных операторов A и B , которые имеют один и тот же ψ. В этом случае ψ представляет собой чистое состояние, которое является одновременно измеримым для A и B .

Общие наблюдаемые переменные, которые повинуются принципу неопределенности

Предыдущие математические результаты показывают, как найти отношения неопределенности между физическими переменными, а именно, определить значения пар переменных A и B коммутатор которых имеет определенные аналитические свойства.

  • самое известное отношение неопределенности - между координатой и импульсом частицы в пространстве:
\Delta x_i \Delta p_i \geq \frac{\hbar}{2}
  • отношение неопределенности между двумя ортогональными компонентами оператора частицы:
\Delta J_i \Delta J_j \geq \frac {\hbar} {2} \left |\left\langle J_k\right\rangle\right |

Где i , j , k отличны и J i обозначает угловой момент вдоль оси x i .

  • следующее отношение неопределенности между энергией и временем часто представляется в учебниках физики, хотя его интерпретация требует осторожности, т.к. не существует оператора, представляющего время:
\Delta E \Delta t \ge \frac{\hbar}{2}

Интерпретации

Принцип неопределенности не очень понравился, и он бросил вызов , и Вернеру Гейзенбергу известным (См. дебаты Бор-Эйнштейн для подробной информации): заполним коробку радиоактивным материалом, который испускает радиацию случайным образом. Коробка имеет открытый затвор, который немедленно после заполнения закрывается при помощи часов в определенный момент времени, позволяя уйти небольшому количеству радиации. Таким образом время уже точно известно. Мы все еще хотим точно измерить сопряженную переменную энергии. Эйнштейн предложил сделать это, взвешивая коробку до и после. Эквивалентность между массой и энергией по позволит точно определить, сколько энергии осталось в коробке. Бор возразил следующим образом: если энергия уйдет, тогда полегчавшая коробка сдвинется немного на весах. Это изменит положение часов. Таким образом часы отклоняются от нашей неподвижной , и по специальной теории относительности, их измерение времени будет отличаться от нашего, приводя к некоторому неизбежному значению ошибки. Детальный анализ показывает, что неточность правильно дается соотношением Гейзенберга.

В пределах широко, но не универсально принятой квантовой механики, принцип неопределенности принят на элементарном уровне. Физическая вселенная существует не в форме, а скорее как набор вероятностей, или возможностей. Например, картина (распределение вероятности) произведенная миллионами фотонов, дифрагирующими через щель может быть вычислена при помощи квантовой механики, но точный путь каждого фотона не может быть предсказана никаким известным методом. считает, что это не может быть предсказано вообще никаким методом.

Именно эту интерпретацию Эйнштейн подвергал сомнению, когда говорил: «я не могу представить, чтобы Бог играл в кости со вселенной». Бор, который был одним из авторов Копенгагенской интерпретации, ответил: «Эйнштейн, не говорите Богу, что делать».

Эйнштейн был убежден, что эта интерпретация была ошибочной. Его рассуждение основывалось на том, что все уже известные распределения вероятности являлись результатом детерминированных событий. Распределение подбрасываемой монеты или катящейся кости может быть описано распределением вероятности (50 % орел, 50 % решка). Но это не означает, что их физические движения непредсказуемы. Обычная механика может вычислить точно, как каждая монета приземлится, если силы, действующие на неё будут известны, а орлы/решки будут все ещё распределяться вероятностно (при случайных начальных силах).

Эйнштейн предполагал, что существуют скрытые переменные в квантовой механике, которые лежат в основе наблюдаемых вероятностей.

Ни Эйнштейн, ни кто-либо ещё с тех пор не смог построить удовлетворительную теорию скрытых переменных, и неравенство Белла иллюстрирует некоторые очень тернистые пути в попытке сделать это. Хотя поведение индивидуальной частицы случайно, оно также скоррелировано с поведением других частиц. Поэтому, если принцип неопределенности - результат некоторого детерминированного процесса, то получается, что частицы на больших расстояниях должны немедленно передавать информацию друг другу, чтобы гарантировать корреляции в своем поведении.

Хотя этот принцип и выглядит довольно странным, по своей сути он чрезвычайно прост. В квантовой теории, где положение объекта характеризуется квадратом амплитуды, а величина его импульса - длиной волны соответствующей волновой функции, этот принцип есть не что иное, как просто факт, характерный для волн: волна, локализованная в пространстве, не может иметь одну длину волны. Недоумение вызывается тем, что, говоря о частице, мы мысленно представляем ее классический образ, а затем удивляемся, когда обнаруживаем, что квантовая частица ведет себя не так, как ее классическая предшественница.

Если настаивать на классическом описании поведения квантовой частицы (в частности, если пытаться приписать ей как положение в пространстве, так и импульс), то максимальные возможные точности одновременного определения ее положения и импульса окажутся связанными между собой с помощью удивительно простого соотношения, впервые предложенного Гейзенбергом и получившего название принципа неопределенности:

где - неточности, или неопределенности, значений импульса и положения частицы. Произведение неточностей импульса и положения

оказывается порядка величины постоянной Планка. В квантовой теории в отличие от классической невозможно одновременно локализовать квантовую частицу и приписать ей определенный импульс Поэтому такая частица не может обладать и траекторией в том же смысле, что классическая частица. Мы имеем в виду отнюдь не психологическую неопределенность. Эта неопределенность характеризует природу такого объекта, который не может одновременно обладать двумя свойствами-положением и импульсом; объекта, отдаленно напоминающего шторм в атмосфере: если он простирается на большие расстояния, то дуют слабые ветры; если же он сконцентрирован в небольшой области, то возникает ураган или тайфун.

Принцип неопределенности содержит в удивительно простой форме то, что было так трудно сформулировать, используя волну Шредингера. Если имеется волновая функция с заданной длиной волны или с заданным импульсом, то ее положение является полностью неопределенным, так как вероятности нахождения частицы в различных точках пространства равны между собой. С другой стороны, если частица полностью локализована, ее волновая функция должна состоять из суммы всех возможных периодических волн, так что ее длина волны или импульс оказываются абсолютно неопределенными. Точное соотношение между неопределенностями положения и импульса (которое получается непосредственно из волновой теории и не связано особым образом с квантовой механикой, так как оно характеризует природу любых волн - звуковых волн, волн на поверхности воды или волн, бегущих вдоль натянутой пружины) дается в простой форме принципом неопределенности Гейзенберга.

Вспомним рассмотренную ранее частицу, одномерное движение которой происходило между двумя стенками, расположенными на расстоянии друг от друга. Неопределенность положения такой частицы не превышает расстояния между стенками, так как мы знаем, что частица заключена между ними. Поэтому величина равна или меньше

Положение частицы, конечно, может быть локализовано в более узких пределах. Но если задано, что частица просто заключена между стенками, ее координата х не может выйти за пределы расстояния между этими стенками. Следовательно, неопределенность, или отсутствие

знания, ее координаты х не может превышать величину I. Тогда неопределенность импульса частицы больше или равна

Импульс связан со скоростью по формуле

следовательно, неопределенность скорости

Если частица-электрон и расстояние между стенками равно см. то

Таким образом, если частица с массой электрона локализована в области, размеры которой порядка то говорить о скорости частицы можно лишь с точностью до см/с,

Используя результаты, полученные ранее, можно найти соотношение неопределенности для волны Шредингера в случае частицы, заключенной между двумя стенками. Основному состоянию такой системы соответствует смесь в равных долях решений с импульсами

(В классическом случае электрон мечется от стенки к стенке, причем его импульс, оставаясь все время равным по величине изменяет свое направление при каждом соударении со стенкой.) Так как импульс изменяется от до его неопределенность равна

Из соотношения де Бройля

а для основного состояния

В то же время

Следовательно,

Этот результат можно использовать для оценки наименьшего значения энергии, которым может обладать квантовая система. Ввиду того что импульс системы - неопределенная величина, эта энергия в общем случае не равна нулю, что радикально отличает квантовую систему от классической. В классическом случае энергия рассматриваемой частицы совпадает с ее кинетической энергией, и когда частица покоится, эта энергия обращается в нуль, Для квантовой системы, как было показано выше неопределенность импульса находящейся в системе частицы составляет

Импульс такой частицы нельзя определить точно, так как возможные его значения лежат в интервале шириной Очевидно, если нуль лежит посредине этого интервала (фиг. 127), то импульс будет изменяться по величине в пределах от нуля до Следовательно, минимальный возможный импульс, который можно приписать частице, равен в силу принципа неопределенности

При меньших значениях импульса принцип неопределенности нарушится. Энергию, соответствующую этому импульсу,

можно сравнить с наименьшей энергией, величину которой мы вычислили с помощью уравнения Шредингера, подбирая подходящую стоячую волну между стенками сосуда:

Ценность полученного результата состоит не в численном согласии, а в том, что нам удалось провести грубую оценку величины минимальной энергии, используя лишь принцип неопределенности. Кроме того, нам удалось понять, почему минимальное значение кинетической энергии квантовомеханической системы (в отличие от классической системы) никогда не равно нулю. Соответствующая классическая частица, заключенная между стенками, обладает нулевой кинетической

энергией, когда она находится в покое. Квантовая же частица не может покоиться, если она захвачена между стенками. Ее импульс или скорость существенно неопределенны, что проявляется в увеличении энергии, причем это увеличение в точности совпадает с тем значением, которое получается из строгого решения уравнения Шредингера.

Этот весьма общий результат имеет особенно важные следствия в том разделе квантовой теории, который соответствует классической кинетической теории, т. е. в квантовой статистике. Широко известно, что температура системы, как утверждает кинетическая теория, определяется внутренним движением составляющих систему атомов. Если температура квантовой системы высока, то нечто весьма похожее на это действительно имеет место. Однако при низких температурах квантовые системы не могут прийти к абсолютному покою. Минимальная температура соответствует наинизшему из возможных состояний данной системы. В классическом случае все частицы находятся в покое, а в квантовом - энергия частиц определяется из выражения (41.17), что не соответствует покою частиц.

Из всего сказанного может создаться впечатление, что мы уделяем слишком много внимания электронам, заключенным между двумя стенками. Наше внимание к электронам вполне оправдано. А к стенкам? Если проанализировать все рассмотренные ранее случаи, то можно убедиться в том, что вид силовой системы, будь то сосуд или что-нибудь иное, удерживающей электрон в ограниченной области пространства, не так уже существен.

Две стенки, центральная сила или различные препятствия (фиг. 128) приводят к примерно одинаковым результатам. Не столь уж важен вид конкретной системы, которая удерживает электрон. Гораздо важнее, что электрон вообще захвачен, т. е. его волновая функция локализована. В результате эта функция представляется в виде суммы периодических волн и импульс частицы становится неопределенным, причем

Проанализируем теперь с помощью принципа неопределенности одно типично волновое явление, а именно расширение волны после прохождения ею небольшого отверстия (фиг. 129). Это явление мы уже разбирали геометрическим способом, вычисляя расстояния, на

которых горбы пересекаются с впадинами., В том, что теперь результаты окажутся сходными, нет ничего удивительного. Просто одна и та же теоретическая модель описывается разными словами. Допустим, что электрон попадает в отверстие в экране, двигаясь слева направо. Нас интересует неопределенность положения и скорости электрона в направлении х (перпендикулярном направлению движения). (Соотношение неопределенности выполняется для каждого из трех направлений в отдельности: Ах-Архжк,

Обозначим ширину щели через эта величина является максимальной погрешностью определения положения электрона в направлении х, когда он проходил через отверстие, чтобы проникнуть за экран. Отсюда мы можем найти неопределенность импульса или скорости частицы в направлении я:

Следовательно, если мы допускаем, что электрон проходит сквозь отверстие в экране шириной мы должны признать, что его скорость при этом станет неопределенной с точностью до величины

В отличие от классической частицы квантовая не может, пройдя сквозь отверстие, дать на экране четкое изображение.

Если она движется со скоростью в направлении экрана, а расстояние между экраном и отверстием равно то она пройдет это расстояние за время

За это время частица сместится в направлении х на величину

Угловой разброс определяется как отношение величины смещения к длине

Таким образом, угловой разброс (интерпретируемый как половина углового расстояния до первого дифракционного минимума) равен длине волны, деленной на ширину отверстия, что совпадает с результатом, полученным ранее для света.

А что можно сказать об обычных массивных частицах? Являются ли они квантовыми частицами или частицами ньютоновского типа? Следует ли пользоваться механикой Ньютона в случае объектов обычных размеров и квантовой механикой в случае объектов, размеры которых малы? Мы можем считать все частицы, все тела (даже Землю) квантовыми. Однако, если размеры и масса частицы соизмеримы с размерами и массами, которые обычно наблюдаются в макроскопических явлениях, то квантовые эффекты - волновые свойства, неопределенности положения и скорости - становятся слишком малыми, чтобы быть обнаружимыми в обычных условиях.

Рассмотрим, например, частицу, о которой мы говорили выше. Допустим, что эта частица - металлический шарик от подшипника с массой в одну тысячную грамма (очень маленький шарик). Если мы локализуем его положение с точностью, доступной нашему зрению, в поле микроскопа, скажем с точностью до одной тысячной сантиметра, то локализованного на длине см, неопределенность скорости оказывается слишком маленькой величиной, чтобы быть обнаруженной при обычных наблюдениях.

Соотношения неопределенности Гейзенберга связывают не только положение и импульс системы, но и другие ее параметры, которые в классической теории считались независимыми. Одним из наиболее интересных и полезных для наших целей соотношений является связь между неопределенностями энергии и времени. Обычно ее записывают в виде

Если система находится в определенном состоянии в течение длительного промежутка времени, то энергия этой системы известна с большой точностью; если же она находится в этом состоянии в течение очень короткого интервала времени, то ее энергия становится неопределенной; этот факт точно описывается соотношением, приведенным выше.

Это соотношение обычно применяют при рассмотрении перехода квантовой системы из одного состояния в другое. Допустим, например, что время жизни какой-то частицы равно , т. е. между моментом рождения этой частицы и моментом ее распада проходит время порядка с. Тогда максимальная точность, с которой может быть известна энергия этой частицы, равна

что составляет весьма небольшую величину. Как мы увидим позднее, существуют так называемые элементарные частицы, время жизни которых порядка с (время между моментом рождения частицы и моментом ее аннигиляции). Таким образом, промежуток времени, в течение которого частица находится в определенном состоянии, очень мал, и неопределенность энергии оценивается как

Эта величина, 4-106 эВ (миллион электронвольт кратко обозначается символом МэВ), огромна; вот почему, как мы увидим позже, таким элементарным частицам, иногда называемым резонансами, приписывают не точное значение энергии, а целый спектр значений в довольно широком диапазоне.

Из соотношения (41.28) можно также получить так называемую естественную ширину уровней квантовой системы. Если, например, атом переходит с уровня 1 на уровень 0 (фиг. 130), то энергию уровня

Тогда разброс значений энергии этого уровня определяется из выражения:

Это типичная естественная ширина энергетических уровней атомной системы.

Само наличие у частицы волновых свойств накладывает определенные ограничения на возможность корпускулярного описания ее поведения. Для классической частицы всегда можно указать ее точное положение и импульс. Для квантового объекта имеем иную ситуацию.

Представим цуг волн пространственной протяженностью - образ локализованного электрона, положение которого известно с точностью . Длину волны де Бройля для электрона можно определить, подсчитав число N пространственных периодов на отрезке :

Какова точность определения ? Ясно, что для слегка отличающейся длины волны мы получим примерно то же самое значение N. Неопределенность в длине волны ведет к неопределенности

в числе узлов, причем измерению доступны лишь . Так как

то отсюда немедленно следует знаменитое соотношение неопределенностей В. Гейзенберга для координат - импульсов (1927 г.):

Точности ради надо заметить, что, во-первых, величина в данном случае означает неопределенность проекции импульса на ось OX и, во-вторых, приведенное рассуждение имеет скорее качественный, нежели количественный характер, поскольку мы не дали строгой математической формулировки, что понимается под неопределенностью измерения. Обычно соотношение неопределенностей для координат-импульсов записывается в виде

Аналогичные соотношения справедливы для проекций радиуса-вектора и импульса частицы на две другие координатные оси:

Представим теперь, что мы стоим на месте и мимо проходит электронная волна. Наблюдая за ней в течение времени , хотим найти ее частоту n . Насчитав колебаний, определяем частоту с точностью

откуда имеем

или (с учетом соотношения )

Аналогично неравенству (3.12) соотношение неопределенностей Гейзенберга для энергии системы чаще используется в виде

Рис. 3.38. Ве́рнер Карл Ге́йзенберг (1901–1976)

Поговорим о физическом смысле этих соотношений. Может сложиться представление, что в них проявляется «несовершенство» макроскопических приборов. Но приборы совсем не виноваты: ограничения носят принципиальный, а не технический характер. Сам микрообъект не может быть в таком состоянии, когда определенные значения одновременно имеют какая-то из его координат и проекция импульса на ту же ось.

Смысл второго соотношения: если микрообъект живет конечное время, то его энергия не имеет точного значения, она как бы размыта. Естественная ширина спектральных липни - прямое следствие формул Гейзенберга. На стационарной орбите электрон живет неограниченно долго и энергия определена точно. В этом - физический смысл понятия стационарного состояния. Если неопределенность в энергии электрона превышает разность энергий соседних состояний

то нельзя точно сказать, на каком уровне находится электрон. Иными словами, на короткое время порядка

электрон может перескочить с уровня 1 на уровень 2 , не излучая фотона, и затем вернуться назад. Это - виртуальный процесс, который не наблюдается и, следовательно, не нарушает закона сохранения энергии.

Похожие соотношения существуют и для других пар так называемых канонически сопряженных динамических переменных. Так, при вращении частицы вокруг некоторой оси по орбите радиусом R неопределенность ее угловой координаты влечет за собой неопределенность ее положения на орбите . Из соотношений (3.12) следует, что неопределенность импульса частицы удовлетворяет неравенству

Учитывая связь момента импульса электрона L с его импульсом L = Rp, получаем , откуда следует еще одно соотношение неопределенностей

Некоторые следствия соотношений неопределенностей

    Отсутствие траекторий частиц. Для нерелятивистской частицы p = mv и

Для массивных объектов правая часть исчезающе мала, что позволяет одновременно измерить скорость и положение объекта (область справедливости классической механики). В атоме же Бора импульс электрона

и неопределенность положения оказывается порядка радиуса орбиты.

    Невозможность состояния покоя в точке минимума потенциальной энергии.

Например, для осциллятора (тело на пружине) энергию Е можно записать в виде

Основное состояние в классической механике это состояние покоя в положении равновесия:

Поэтому величина неопределенностей и имеет порядок самих значений импульса и координаты, откуда получаем

Минимум энергии достигается в точке

Вообще говоря, такие оценки не могут претендовать на точный ответ, хотя в данном случае (как и для атома водорода) он действительно точен. Мы получили так называемые нулевые колебания : квантовый осциллятор, в отличие от классического, не может оставаться в покое - это противоречило бы соотношению неопределенностей Гейзенберга. Точные расчеты показывают, что формулу Планка для уровней энергии осциллятора надо было бы писать в виде

где n = 0, 1, 2, 3, ... - колебательное квантовое число.

При решении задач на применение соотношения неопределенностей следует иметь в виду, что в основном состоянии в классической физике электрон покоится в точке, соответствующей минимуму потенциальной энергии. Соотношения неопределенностей не позволяют ему это делать в квантовой теории, так что электрон должен иметь некоторый разброс импульсов. Поэтому неопределенность импульса (его отклонение от классического значения 0 ) и сам импульс по порядку величины совпадают

По своему принципу рентгеновские методы анализа делятся на рентгеноабсорбционные, рентгеноэмиссионные и рентгенофлуоресцентные. Первые применяют довольно редко, хотя они удобны для определения, например, тяжелых атомов в матрице из легких атомов (свинец в бензине). Вторые весьма широко используют в варианте микроанализа – электронного зонда. Но наибольшее значение в настоящее время имеют, по-видимому, рентгенофлуоресцентные методы.

Рис. 6. Схема аппаратуры для рентгено-флуоресцентного анализа.

Рентгеноэмиссионный микроанализ – важное средство изучения минералов, горных пород, металлов, сплавов и многих других твердых объектов, прежде всего многофазных. Метод позволяет проводить анализ «в точке» (диаметр – до 500 нм и глубина вплоть до 1–2 микронов) или на участке поверхности за счет сканирования. Пределы обнаружения в этом случае обычно невелики, точность анализа оставляет желать лучшего, но как прием качественного и полуколичественного исследования включений и других неоднородностей электронный зонд давно завоевал общее признание. Несколько фирм производили и производят соответствующие приборы, в том числе приборыкомбайны, обеспечивающие анализ и другими методами – ЭСХА,

оже-электронной спектроскопией, масс-спектрометрией вторичных ионов. Аппаратура эта обычно сложная и дорогая.

Рентгенофлуоресцентный метод (РФА) – массовый, повсеместно применяемый, отличающийся важными достоинствами. Это анализ без разрушения; многоэлементность в сочетании с экспрессностью, что обеспечивает высокую производительность; довольно высокая точность; возможность создания небольших и не очень дорогих приборов, в том числе упрощенных анализаторов, например для быстрого определения драгоценных металлов в изделиях. Однако применяют также универсальные и непростые спектрометры, особенно для научно-исследовательских работ. Основная рубрикация рентгенофлуоресцентных приборов, однако, иная: их делят на энергодисперсионные и с дисперсией по длинам волн.

Рентгенофлуоресцентный метод решает задачи определения основных компонентов в геологических объектах, цементах, сплавах, и в последнее время – в объектах окружающей среды. Можно определять почти все элементы, кроме элементов начала периодической системы. Пределы обнаружения не слишком низкие (обычно до 10–3 –10–4 %), но зато погрешность вполне допустима даже при определении основных компонентов.

Частицами вызванная эмиссия рентгеновского излучения – аналитический метод, основанный на флуоресценции под действием рентгеновских лучей. Строго говоря, это не ядерная, а атомная техника. Однако вакансия в электронной оболочке атома, заполнение которой сопровождается рентгеновским излучением, создаётся пучком ионов, ускоренных на ускорителе, да и для регистрации рентгена используются типичный для измерения ионизирующей радиации полупроводниковый Si(Li) –

детектор.

Рис. 7. Рентгеновский спектр дождевой воды.

Аппаратура для этого метода схематически представлена на Рис. 6 . Пучок заряженных частиц, обычно – протонов, разогнанных на ускорителе до энергий 2 – 4 МэВ, бомбардирует тонкий образец, расположенный в вакуумной камере. Протоны соударяются с электронами материала, и выбивают некоторых из них с внутренних оболочек атомов. Сосуд Фарадея собирает заряженные протоны и тем самым измеряет ток пучка. Образец обычно – анализируемый материал, отложенный тонким слоем

на подложке. Характеристические рентгеновские лучи из образца регистрируются Si(Li) детектором. Типичный спектр представлен на Рис. 7. Спектр состоит из дискретных рентгеновских пиков, наложенных на фон рассеяния. Видны линииК а иK b лёгких элементов, возникшие при заполнении вакансий наК оболочке,

и L линии тяжёлых элементов. Пики, соответствующие данному элементу, интегрируют и по площади пика рассчитывают количество элемента или по известному абсолютному сечению ионизации (1 – 104 барн), выходу флюоресценции (0,1 – 0,9), току пучка и геометрии, или путём сравнения с результатами измерений эталона. Термин выход флуоресценции отражает долю заполняемых электронных вакансий при эмиссии рентгена от испущенных Оже-электронов.

Типичные пределы регистрации различных элементов в биологических образцах представлены на Рис. 8 . Для многих элементов чувствительность составляет часть на миллион. Этот метод в основном применяется в биологии и медицине. Использование матрицы из лёгких элементов уменьшает непрерывный фон и удаётся регистрировать многие примесные и токсичные элементы. (Здесь нет «дыр» в пределах детектирования, которые имеют место в активационном анализе, т.к. все элементы какое-нибудь изучение да испускают). Сложности возникают при приготовлении тонких репрезентативных образцов. Заметим, что рассматриваемый здесь метод чувствителен к элементному, а не к изотопному составу.

Самое успешное применение рентгеновского анализа – исследование загрязнения аэрозолей воздуха. Аэрозоли собирают на фильтровальную бумагу, которая представляет собой идеально тонкий образец для анализа. Основное преимущество – возможность анализа большого количества образцов за короткий период времени. Анализ осуществляется за минуту, причём все процедуры могут быть автоматизированы.

Рис. 8. Пределы детектирования в рентгено-флуоресцентном анализе биологических образцов.

Важный вариант – локальный микроанализ. Используя пучок протонов с диаметром 0,5 мм можно определить содержание следовых элементов в небольшой части образца, представляющего интерес для медицины.

3. РЕЗЕРФОРДОВСКОЕ ОБРАТНОЕ РАССЕЯНИЕ

Одним из первых экспериментов в ядерной физике была демонстрация большого углового рассеяния α -частиц от ядер золота. Эти эксперименты доказали существование в атоме маленького ядра. Силы, действующие в этом процессе, названном резерфордовским рассеянием, - кулоновские силы отталкивания положительно заряженных ядер. Схема явления представлена наРис. 9 .

Рис. 9. Схема метода обратного резерфордовского рассеяния.

Спектроскопия резерфордовского обратного рассеяния (спектроскопия рассеяния быстрых ионов, спектроскопия ионного рассеяния) - разновидность спектроскопии ионного рассеяния, основанная на анализе энергетических спектров ионов He + или протонов с энергией ~1-3 МэВ, рассеянных в обратном направлении по отношению к исследуемому образцу.

Ядерно-физический метод исследования твёрдых тел - метод обратного резерфордовского рассеяния - основан на применении физического явления – упругого рассеяния ускоренных частиц на большие углы при их взаимодействии с атомами вещества. Этот

метод используется для определения состава мишеней путем анализа энергетических спектров обратно рассеянных частиц. Аналитические возможности резерфордовского рассеяния лёгких частиц наши применение в различных областях физики и техники, от от электронной промышленности до исследований структурных фазовых переходов в высокотемпературных соединениях.

В спектроскопии резерфордовского обратного рассеяния пучок моноэнергетичных (обычно 1-2 МэВ) коллимированных легких ионов (Н+ , Не+ ) сталкивается с мишенью, после чего частично проникает вглубь образца, а частично отражается. В ходе анализа регистрируют число и энергию частиц, рассеявшихся на уголθ >90° (Рис. 10 ) и тем самым получают информацию о составе и структурных характеристиках исследуемого материала.

Энергия обратно рассеянных частиц:

Е 1 =КЕ 0 , (9)

где Е 0 - начальная энергия частиц пучка, аК - кинематический фактор, определяющий долю энергии, переданной ионом атомам твёрдого тела.

Рис. 10. Схема экспериментальной установки резерфордовского обратного рассеяния. 1- пучок первичных ионов; 2-коллиматоры; 3- исследуемый образец; 4- обратно рассеянный пучок ионов; 5- детектор.

Рассмотрим принципиальные особенности метода обратного резерфордовского рассеяния. Возможная схема применения метода показана на Рис. 11 . Коллимированный пучок ускоренных частиц с массойМ 1 , порядковым номеромZ 1 и энергиейЕ 0 направляется на поверхность объекта исследования. В качестве объекта исследования может быть достаточно тонкая пленка, масса и порядковый номер атомов которой равны, соответственно,М 2 иZ 2 .

Рис. 11 . Схема применения метода обратного резерфордовского рассеяния

Часть ионов в пучке отражается от поверхности с энергией К М 2 Е 0 , а часть проходит вглубь, рассеиваясь затем на атомах мишени. ЗдесьК М 2 - кинематический фактор, определяемый как отношение энергии частицыК М Е после упругого рассеяния частицы на уголθ на атоме мишениМ к её значению до столкновенияЕ . Кинематический фактор - функция угла

рассеяния. Рассеянные частицы, имеющие определенную энергию, выходят из мишени в разных направлениях, в одном из которых под углом θ к направлению первоначального движения регистрируется их число и энергия. Если энергии частиц анализирующего пучка достаточно для того, чтобы достичь задней поверхности мишени, то рассеянные атомами этой поверхности частицы будут иметь энергиюЕ 1 . Общая картина рассеянных от плёнки ионов представляет собой энергетический спектр обратно рассеянных частиц. В случае присутствия на поверхности пленки примеси, масса атомов которой равнаМ 3 , на энергетических спектрах обратного рассеяния появится пик в области энергийК М 3 Е 0 . Пик будет расположен в низкоэнергетической области спектра, если М3 M 2 .

Метод обратного резерфордовского рассеяния предполагает передачу энергии при процессах упругих взаимодействий двух тел, причём энергия налетающей частицы Е 0 должна быть намного больше энергии связи атомов в твердых телах. Поскольку последняя составляет величину порядка 10 – 20 эВ, то это условие всегда выполняется, когда для анализа используются ускоренные ионы с энергией в диапазоне от нескольких сотен кэВ до 2 – 3 МэВ. Верхняя граница энергии анализирующего пучка определяется таким образом, чтобы избежать возможных резонансных ядерных реакций при взаимодействии пучка с атомами мишени и примеси.

Резерфордовское обратное рассеяние является упругим и не приводит к возбуждению ни бомбардирующей частицы, ни ядра мишени. Однако, из-за сохранения энергии и момента взаимодействия, кинетическая энергия обратно рассеянного иона, меньше, чем у начального иона. Соотношение между этими энергиями есть кинетический факторК , задаваемый выражением:

cosθ + M 2

− M 2sin 2

M 1+ M 2

где М 1 иМ 2 – массы атомов снаряда и мишени, соответственно, иθ - угол между падающим и рассеянном пучками ионов.

Относительный сдвиг в энергии при соударениях зависит только от масс ионов и угла детектора. Если измерить угол рассеяния и энергетический сдвиг, можно рассчитать массу (идентифицировать) рассеивающий атом.

Величина К определяет разрешение по массе: чем большеК , тем больше разрешение. Это реализуется для угловθ близких к 1800 и для большихМ 1 (посколькуМ 1 < М 2 ).

Из угловой зависимости кинематического фактора (1) следует, что

1) измеряя угол рассеяния и энергию рассеянных частиц, можно определить массу рассеивающих

2) для достижения хорошей чувствительности метода угол рассеяния должен быть достаточно большим, а масса налетающих частиц не слишком малой.

Поскольку энергетическое разрешение используемых детекторов обычно не менее 20 кэВ, то для наиболее оптимальных условий экспериментов выбирают угол рассеяния порядка 160о , а в качестве анализирующего пучка обычно используют ускоренные ионы гелия.

Наибольшее изменение энергии происходит для θ =180о , где

− M 1

Обычно выбирается геометрия, которая позволяет детектировать рассеяние α -частиц (или протонов) при очень больших углах.

Дифференциальное сечение рассеяния dσ /dΩ для упругих столкновений лабораторной системе

координат, описывающее процесс атомноатомного рассеяния имеет вид:

Z1 Z2 e2

(cosθ + x 2 sin2

θ ) 2

d Ω=

sin4 θ

1− x 2 sin2 θ

где х =М 1 /М 2 , е2 – квадрат заряда электрона, иЕ – энергия бомбардирующей частицы (снаряда). Вероятность рассеяния задаётся как (Z 1 Z 2 )2 и как 1/E 2 . Спектр обратного рассеяния частиц соответствует пику для каждого элемента в образце с относительной высотой (площадью)Z 2 .

Дифференциальное сечение рассеяния сильно уменьшается с увеличением угла рассеяния (~1/Sin4 θ ) и увеличивается с уменьшением энергии пучка (~1/Е 2 ). Оно квадратично растет с увеличением номеровZ 1 иZ 2 сталкивающихся атомов. Для достижения высокого разрешения по массе, необходимо, чтобы налетающая частица рассеивалась на уголθ как можно более близкий к 1800 - требование, которое сильно уменьшает величину регистрируемого сигнала и повышает требования к чувствительности канала регистрации.

F ∫

где N – число атомов мишени,D – число зарегистрированных событий,F поток бомбардирующих ионов. Формула справедлива для очень тонкой плёнки или если рассеивающие частицы отражаются от поверхности толстого образца.

E= KE0 - E=[ ε ] BS Nx

[ε ]

cosθ

cosθ

где ε in иε ou t зависящие от энергии сечения торможения на входном и выходном пути иона.

Рис. 12. Шкала энергетической глубины в обратном резерфордовском рассеянии.

На практике ситуация обычно более сложная, поскольку потеря энергии начальных ионов при проникновении в образец сопровождается непрерывным изменением вероятности рассеяния и энергии рассеянных частиц. Возникшие спектры для рассеяния от

одного элемента на различных глубинах показаны на Рис. 12 , где начальная энергия ионовE 0 , энергия ионов, рассеянных от поверхности,KE 0 , а энергия ионов, рассеянных на глубинеx естьE 1 . В этой ситуации, потеря энергии при пересечении фольги толщинойN x туда и обратно:

Рис. 13. Тандемный ускоритель ионов.

Рис. 14. Резерфордовское обратное рассеяние 2,0 МэВ 4 Не ионов на образце Si(Co). Точки – экспериментальные данные, линия – модельный спектр. Угол рассеянияΘ =170о сθ 1 =θ 2 =5о .

Для экспериментальных исследований используются различные ускорители ионов, например ускорители Ван-де- Графа. В качестве примера наРис. 13 показана установка для исследования обратного рассеяния с использованием тандемного ускорителя ионов.

Резерфордовское обратное рассеяние – важный метод определения состава и строения поверхностей и тонких плёнок. На Рис. 14 показаны результаты применения метода обратного резерфордовского рассеяния ионной4 Не с

энергией 2 МэВ на поверхности кремния, допированного кобальтом, путём диффузии вглубь материала. Легко регистрируется кобальт и его распределение по глубине исследуемого материала.

Выше мы рассмотрели возможности метода обратного резерфордовского рассеяния в элементной избирательности и чувствительности к малым количествам примесных атомов. Речь шла об атомах, локализованных на поверхности мишени. Метод, однако, может быть применён и для измерения характера распределения примеси по объёму образца – концентрационного профиля. Определение пространственного распределения примесей и дефектов основано на регистрации разницы в энергии частиц Е , рассеянных атомами, находящимися на разной глубине. Частица, попадающая в детектор, претерпев акт упругого рассеяния на некоторой глубине x, имеет меньшую энергию, чем частица, рассеянная атомами вблизи поверхности. Это связано как с потерями энергии на пути в мишень и из неё, а, так и с различиями в потерях энергии при упругом взаимодействии частицы с атомами, находящимися на поверхности и на глубинеx .

Таким образом, спектроскопия резерфордовского обратного рассеяния позволяет получать информацию о химическом составе и кристалличности образца как функции расстояния от поверхности образца (глубины), а также о структуре приповерхностного слоя монокристаллического образца.

Рис. 15. Схематическая диаграмма спектра ионов с массой m 1 и первичной энергией E 0 , рассеянных от образца, состоящего из подложки из атомов с массой m 2 и пленки из атомов с массой m 3 толщиной d . Для простоты и пленка, и подложка считаются аморфными, чтобы избежать структурных эффектов.

Химический анализ с разрешением по глубине основан на том, что лёгкий высокоэнергетический ион может проникнуть глубоко внутрь твердого тела и рассеяться обратно от глубоко лежащего атома. Энергия, потерянная ионом в этом процессе, представляет собой сумму двух вкладов. Во-первых, это непрерывные потери энергии при движении иона вперед и назад в объеме твердого тела (т.н. потери на торможение). Скорость потери энергии на торможение (тормозная

способность, dE /dx) табулирована для большинства материалов, что позволяет перейти от шкалы энергий к шкале глубин. Во-вторых, это разовая потеря энергии в акте рассеяния, величина которой определяется

массой рассеивающего атома. В качестве примера на Рис. 15 приведена схема формирования спектра от образца, представляющего собой тонкую пленку на подложке. Пленка толщинойd проявляет себя на спектре в виде плато ширинойE . Правый край плато соответствует ионам, упруго рассеянным от поверхности, левый край – ионам, рассеянным от атомов пленки на границе раздела пленка-подложка. Рассеяние от атомов подложки на границе раздела соответствует правому краю сигнала подложки.

Рассмотрим процесс рассеяния частиц на большой угол на глубине и на поверхности в соответствии с Рис. 16. Пусть на мишень падает частица с энергиейЕ 0 под угломθ 1 . Детектор, расположенный под угломθ 2 , регистрирует частицы, рассеянные на поверхности и на глубине x. Частицы, рассеянные на поверхности, попадают в детектор, имея энергиюК М 2 Е 0 . Частицы же, рассеянные на глубинеx , будут иметь энергиюЕ 1 , которая определяется соотношением:

K M 2 E −

cosθ 2

dx out

где (dE /dx )out - линейные потери энергии частицы при ее движении от точки рассеяния на глубинеx до выхода из мишени,Е - энергия, с которой частица подойдет от поверхности к точке рассеяния на глубинеx :

E = E0

cosθ 1

dx in

где (dE /dx )in - линейные потери энергии частицы при ее движении от поверхности до точки рассеяния на глубинеx . Таким образом:

E = x KM 2

E 1 =E 0 -E ,

1 dE

1 dE

cosθ 1

dx in

cosθ 2

dx out

Рис. 16. Геометриярассеяния частиц от мишени

Выражение в квадратных скобках в (19) обычно называют фактором энергетических потерь и обозначают как

S . Рассматривая для простоты геометрию эксперимента,

когда θ 1 =0, т.е. θ 2 =π -θ , получим следующее выражение для фактора энергетических потерь:

S = K

cosθ

dx in

dx out

и, соответственно,

E = S x.

Последнее соотношение

лежит в основе перевода энергетической шкалы в спектрах обратного рассеяния в шкалу глубины. При этом глубинное разрешение определяется энергетическим разрешением детектора и может составлять величину до

Для определения энергетических потерь частицы (dE /dx ) используют квантовую теорию торможения. Формула торможения для быстрых нерелятивистских частиц с массой, значительно большей электронной массы, имеет вид:

4 π e4 Z2 Z N

2 mv2

− dx

где v - скорость частицы,N - концентрация атомов мишени,e, m - заряд и масса электрона,I - средний ионизационный потенциал. Средний ионизационный потенциал, входящий в формулу (21), - подгоночный параметр, определяемый из экспериментов по торможению заряженных частиц. Для оценки среднего ионизационного потенциала используют формулу Блоха:

I= ε Ry Z2

где ε Ry =13,6 эВ - постоянная Ридберга.

A i = q Ωσ i (Nx ) i ,

Рис. 17 . Энергетический спектр ионов гелия с энергией 2 МэВ обратно рассеянных от кремниевой мишени

На Рис. 17 приведен пример энергетического спектра обратного рассеянных ионов. Стрелками отмечены положения пиков тех элементов, которые содержатся на поверхности исследуемого образца. Обнаружение той или иной примеси связано не только с энергетическим разрешением детектора, но и с количеством этой примеси в мишени, т. е. с величиной сигнала от данной примеси на энергетическом спектре. Величина сигнала от i -го элемента примеси в мишени, или площадь под пикомА i , определяется выражением:

где (Nx )i - слоевое содержание i -го элемента (1/см2 ),σ i - среднее дифференциальное сечение рассеяния анализирующих частиц на атомах в детектор с телесным угломΩ (см2 /ср),q - полное число анализирующих частиц, попавших в мишень за время измерения спектра. Из соотношения (23) следует, что стандартных условиях эксперимента (т.е. при постоянныхΩ иq ) величина сигнала пропорциональнаσ i . Для вычисления среднего дифференциального сечения можно воспользоваться формулой:

cosθ +

1−

sin2 θ

Mi 2

Z1 Zi e

σ i=

2E sin

1−

sin2

Mi 2

Из последней формулы следует, что величина сигнала в спектрах обратного рассеяния зависит от порядкового номера элемента как Z i 2 .

Рис. 18 . Схема процесса рассеяния.

Таким образом, обратно рассеянные частицы с энергией ниже той, что соответствует рассеянию с поверхности моноатомной мишени, несут информацию о глубине, на которой произошло рассеяние. Действительно, до столкновения, которое произошло на глубине х от поверхности мишени, первичная частица должна пройти расстояниех в твёрдом теле, теряя энергию как на пути вперед, так и после столкновения при выходе мишени в направлении детектора. НаРис. 18 представлены обозначения, используемые для вычисления разницы

между энергией налетающей частицы, которая рассеялась на поверхностном атоме на угол θ ,kE 0 и энергиейЕ 1 (х ) частицы, достигшей детектора после столкновения на глубинех от поверхности мишени:

1 dE

− E 1

(x )=

cosθ 1

dx in

cosθ 2

dx out

В качестве величины dE /dx в (25) берут среднее значение энергии частицы на пути до и после столкновения. Формула (25) преобразует шкалу энергий регистрируемых частиц в шкалу глубин; максимальное значение энергии соответствует рассеянию с поверхности мишени (Е 1 (0) =kE 0 , минимальная энергия соответствует наибольшей глубине рассеяния.Рис. 19 схематически иллюстрирует спектр пучка легких ионов (Не) обратно рассеянных с мишениС , в которую имплантирован As.

Рис. 19 . Типичный спектр обратного резерфордовского рассеяния гелия для углерода с поверхностно легированным и имплантированным мышьяком

Необходимо отметить следующее:

1. Конечность спектра подложки и её шкалы глубин;

2. Положение и ширину пика от имплантированного As, который смещен вниз по энергии и уширен в сравнении с положением и шириной пика от тонкого слоя As на поверхности С подложки (пунктирная кривая);

3. Высоту пика от имплантированного As (h ) по отношению к высоте спектраС вблизи поверхности (Н ).

Первое объясняется следствием энергетической зависимости сечения резерфордовского рассеяния, связанной с потерями энергии налетающих частиц в мишени. Второе отражает тот факт, что вследствие большей массы атомов имплантированного As, обратно рассеянные на As ионы будут иметь бoльшую энергию, чем ионы, рассеянные на атомах С , поэтому профиль As примеси может быть измерен независимо от наличия атомовС в объеме. Энергия, при которой появляется пик от примеси по отношению к энергии, которая наблюдалась, если бы эта примесь была на поверхности (25) даёт информацию о глубине имплантированной примеси, а ширина пика с поправкой на разрешение детектора обеспечивает информацию о диффузии и распределении имплантированной примеси. Третье иллюстрирует тот факт, что спектр обратного рассеяния дает плотность числа конкретного вида атомов на глубинех исходя из измерений

где Q - общее число частиц, попадающих в мишень,N - объемная плотность атомов мишени,σ (Ω ) - среднее дифференциальное сечение рассеяния,Ω - телесный угол, регистрируемый детектором. Отношение высотыh пика от As к высотеН спектра атомов мишениС отражает отношение между числом атомов As и С в мишени с поправкой на различное сечение рассеяния для двух элементов и на различие энергий частиц до столкновения в соответствии с глубиной имплантированного As.

Для исследования структуры монокристаллических образцов с помощью спектроскопии резерфордовского обратного рассеяния используется эффект каналирования . Эффект заключается в том, что при ориентации пучка ионов вдоль основных направлений симметрии монокристаллов те ионы, которые избежали прямого столкновения с атомами поверхности, могут проникать глубоко в кристалл на глубину до сотен нм, двигаясь по каналам, образованным рядами атомов. Сравнивая спектры, полученные при ориентации пучка ионов вдоль направлений каналирования и вдоль направлений, отличных от них, можно получить информацию о кристаллическом совершенстве исследуемого образца. Из анализа величины поверхностного пика, являющегося следствием прямого столкновения ионов с атомами поверхности, можно получить информацию о структуре поверхности, например, о наличии на ней реконструкций, релаксаций и адсорбатов.

Если направление распространения пучка ионов устанавливается почти параллельно плотно упакованным цепочкам атомов, ионы пучка будут направляться потенциальным полем цепочки атомов в кристалле, результатом этого будет волнообразное движение частиц, при котором каналированные ионы не могут близко подойти к атомам в цепочках. Поэтому вероятность обратного рассеяния ионов резко уменьшается (примерно на два порядка). Повышается и чувствительность рассеяния к незначительному содержанию примеси на поверхности. Очень важно, что происходит полное взаимодействие пучка с первыми монослоями твердого тела. Это “поверхностное взаимодействие” приводит к улучшению разрешения по глубине. На Рис. 20 представлены спектры обратного рассеяния для случаев, когда пучок ионов параллелен главной кристаллографической оси и когда пучок ионов имеет “случайное” (не параллельное кристаллографической оси) направление.

Даже когда “случайный” и “каналированный” спектры получены для идентичных ионных пучков (с одинаковым числом падающих частиц), число событий обратного рассеяния, регистрируемых детектором значительно меньше для “каналированного” спектра за счёт эффекта каналирования. Такое уменьшение выхода обратного рассеяния отражает степень совершенства кристаллической структуры мишени, для чего вводят величину “нормированный минимальный выход” χ min , который определяется как отношение числа обратно рассеянных частиц в узком энергетическом “окне” (вблизи поверхности кристалла) “каналированного” и “случайного” спектров (Рис. 20а ,c min =Н а /Н ). Для случая наибольшего сближения ионов пучка с цепочкой атомовr , концентрации атомовN и периода расположения атомов вдоль цепочки, преимущественно определяется тепловыми колебаниями атомов в кристалле.

В экспериментах по каналированию кристаллический образец закрепляется в гониометрическом устройстве, и регистрируется число близких столкновений (как например, обратное рассеяние из приповерхностной области) как функция угла наклона ψ пучка к кристаллографической оси для фиксированного числа падающих частиц. Кривая, полученная в результате углового сканирования, показана наРис. 20б . Кривая симметрична относительно минимума выхода и имеет ширину, определяемую как полуширина на половине высоты кривой. Приблизительная оценка критического значения углаψ с , больше которого пучок будет пробивать ряд атомов, может быть легко получена приравниванием поперечной энергии падающей частицыЕ 0 ψ с и поперечной энергией U(ρ ) в точке поворота:

ψ с = 1/2

Метод каналированного обратного рассеяния используется для исследования разориентированных кристаллических решеток путем измерения доли атомов, для которых каналы закрыты. Когда падающий пучок направлен вдоль направления каналирования совершенного кристалла, значительное уменьшение выхода обратного рассеяния наблюдается вследствие того, что каналированные ионы, направляемые атомными цепочками, не приближаются к атомам достаточно близко, чтобы испытать столкновение. Однако, если часть кристалла разориентирована и атомы решетки смещены так, что закрывают часть каналов, ионы, направленные вдоль номинального направления каналирования, испытывают близкие столкновения со смещенными атомами, в результате чего выход обратного рассеяния увеличивается по сравнению с ненарушенными каналами. Так как смещённые атомы имеют ту же массу, что и атомы решетки, увеличение выхода обратного рассеяния происходит при энергии, соответствующей глубине, на которой расположен смещенный атом. Увеличение выхода обратного рассеяния с данной глубины, зависит от числа смещенных атомов, а зависимость выхода от глубины (энергия обратного рассеяния Е 1 ) отражает распределение смещенных атомов по глубине.

В то время как ионы высоких энергий могут проникать в твердое тело на глубину порядка нескольких микрон, ионы средних энергий (порядка сотен килоэлектронвольт) рассеиваются почти полностью в приповерхностном слое и широко используются для исследования первых монослоев. Налетающие на мишень ионы средних энергий рассеиваются на атомах поверхности посредством бинарных столкновений и регистрируются электростатическим энерго-анализатором. Такой анализатор регистрирует только заряженные частицы, а в диапазоне энергий ~1 кэВ частицы, проникающие глубже первого монослоя, выходят наружу почти всегда в виде нейтральных атомов. Поэтому чувствительность эксперимента только к заряженным частицам повышает поверхностную чувствительность метода рассеяния ионов низких энергий. Главными причинами высокой поверхностной чувствительности этого метода является зарядовая избирательность электростатического анализатора и очень большие значения сечений рассеяния. Разрешение по массе определяется энергетическим разрешением электростатического энергоанализатора.

Однако форма спектра отличается от той, которая характерна для высоких энергий. Теперь спектр состоит из серии пиков, соответствующих атомным массам элементов поверхностного слоя. Количественный

анализ в этом диапазоне сложен по двум причинам: 1) вследствие неопределенности сечений рассеяния и 2) из-за отсутствия достоверных данных о вероятности нейтрализации ионов, рассеянных на поверхности. Влияние второго фактора можно свести к минимуму, используя пучки с малой вероятностью нейтрализации

и применяя методы детектирования, не чувствительные к зарядовому состоянию рассеянного иона.

В заключение, упомянем ещё одно любопытное применение метода обратного резерфордовского рассеяния – определение элементного состава лунной и марсианской поверхностей. В миссии США 1967-68

источник 242 Cm испускал α -частицы, рассеяние которых впервые обнаружило в лунном грунте повышенное содержание титана, что в последствии было подтверждено лабораторным анализом лунных минералов. Эта же методика использовалась при изучении марсианских горных пород и почвы.