Horizon Zero Dawn: как получить лучшую броню "Ткач Щита". Топливные элементы: экскурс в будущее

Древний Арсенал является одним из побочных квестов в Horizon Zero Dawn. Он начинается, когда вы находите свой первый топливный элемент , или секретный бункер c бронёй из Ультраткани (Ткач щита) . Чтобы закончить его, вам нужно найти все топливные элементы, решить головоломки в бункере и взять броню. В этом гайде мы покажем вам, как закончить квест Древний Арсенал Horizon Zero Dawn.

Локация «Древнего Арсенала»

Бункер с доспехами находится на восточной стороне карты в Руинах к юго-западу от зоны Рыскарей и к северо-западу от Торговца. Вы можете найти их, взбираясь по скалам. На верху прыгайте вниз в дыру, не бойтесь, там будет вода. Если вы раньше охотились за Металлическими цветами , то уже должны знать о местонахождении Древнего Арсенала . Это то же самое место.



Как разблокировать броню «Древний Арсенал»

Вам нужно будет собрать 5 топливных элементов , чтобыактивировать голозамки и решить головоломки. Все они находятся по ходу прохождения основных миссий, за исключением первого. Если вы пропустите их в первый раз, то сможете вернуться к ним позже. Они отображаются в виде зелёных пиктограмм, когда вы рядом, и их все можно найти в старых бункерах и руинах.

Топливный элемент #1: Первый элемент лежит в бункере в самом начале игры, где Элой находит свой визор. Вы не сможете добраться до него, пока Элой будет ребенком. Это можно сделать во время ее второго визита. Ищите образование сталактитов, блокирующих дверной проём. Их можно сломать копьём.



Топливный элемент #2: Её можно найти в Утробе Горы Великой Матери . Это место, где Элой просыпается, теряя всё своё снаряжение после квеста Инициации. Расположение элемента находится там же, где вы нашли своё снаряжение. Ищите запертую дверь, слева от неё есть небольшое отверстие, в которое можно войти. Проползите по нему и возьмите второй элемент.



Топливный элемент #3: Этот элемент можно найти в руинах Клада Смерти в северо-восточной части карты. За дверью с тремя голозамками осмотрите ящик, чтобы найти элемент.



Топливный элемент #4: Найдите этот элемент в квесте Предел Мастера . Это квест, который заканчивает Элой в полуразрушенном зале заседаний после того, как она узнаёт о происхождении машин. Посмотрите к востоку от стола. Увидите скалу, по которой можно взобраться. Продолжайте подниматься наверх, пока не найдёте четвёртый элемент.



Топливный элемент #5: Вы можете взятьегов квесте Павшая гора в руинах Геи-Прайм . Поговорив в мастерской с Сайленсом, за дверью, спуститесь вниз по шахте, когда выйдете из пещеры слева есть секретный путь, по которому вы можете попасть в туннель в горе. Идите туда, пока не увидите полку с последним топливным элементом.




Разблокировка «Древнего Арсенала»

Когда у вас есть все топливные элементы, возвращайтесь к руинам, где вы нашли броню. Вставьте в голозамки первые два топливных элемента. Подсказку для разблокировки двери можно увидеть на терминале справа. Код указывает на время в 24-часовом формате. Поверните замки в таком порядке: вверх , вправо , вниз , влево , вверх .

Экология познания.Наука и техника: Водородная энергетика является одной из самых высокоэффективных отраслей, а топливные элементы позволяют ей оставаться на передовой инновационных технологий.

Топливный элемент – это устройство, которое эффективно вырабатывает постоянный ток и тепло из богатого водородом топлива путем электрохимической реакции.

Топливный элемент подобен батарее в том, что он вырабатывает постоянный ток путем химической реакции. Опять же, подобно батарее, топливный элементвключает анод, катод и электролит. Однако, в отличие от батарей, топливные элементы не могут накапливать электрическую энергию, не разряжаются и не требуют электричества для повторной зарядки. Топливные элементы могут постоянно вырабатывать электроэнергию, пока они имеют запас топлива и воздуха. Правильный термин для описания работающего топливного элемента – это система элементов, так как для полноценной работы требуется наличие некоторых вспомогательных систем.

В отличие от других генераторов электроэнергии, таких как двигатели внутреннего сгорания или турбины, работающие на газе, угле, мазуте и пр.,топливные элементы не сжигают топливо. Это означает отсутствие шумных роторов высокого давления, громкого шума при выхлопе, вибраций. Топливные элементы вырабатывают электричество путем бесшумной электрохимической реакции. Другой особенностью топливных элементов является то, что они преобразуют химическую энергию топлива напрямую в электричество, тепло и воду.

Топливные элементы высокоэффективны и не производят большого количества парниковых газов, таких как углекислый газ, метан и оксид азота. Единственным продуктом выброса при работе топливных элементов являются вода в виде пара и небольшое количество углекислого газа, который вообще не выделяется, если в качестве топлива используется чистый водород. Топливные элементы собираются в сборки, а затем в отдельные функциональные модули.

Принцип работы топливных элементов

Топливные элементы вырабатывают электроэнергию и тепло вследствие происходящей электрохимической реакции, используя электролит, катод и анод.

Анод и катод разделяются электролитом, проводящим протоны. После того, как водород поступит на анод, а кислород - на катод, начинается химическая реакция, в результате которой генерируются электрический ток, тепло и вода. На катализаторе анода молекулярный водород диссоциирует и теряет электроны. Ионы водорода (протоны) проводятся через электролит к катоду, в то время как электроны пропускаются электролитом и проходят по внешней электрической цепи, создавая постоянный ток, который может быть использован для питания оборудования. На катализаторе катода молекула кислорода соединяется с электроном (который подводится из внешних коммуникаций) и пришедшим протоном, и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

Ниже приведена соответствующая реакция:

Реакция на аноде: 2H2 => 4H+ + 4e-
Реакция на катоде: O2 + 4H+ + 4e- => 2H2O
Общая реакция элемента: 2H2 + O2 => 2H2O

Типы топливных элементов

Подобно существованию различных типов двигателей внутреннего сгорания, существуют различные типы топливных элементов – выбор подходящего типа топливной элементы зависит от его применения. Топливные элементы делятся на высокотемпературные и низкотемпературные. Низкотемпературные топливные элементы требуют в качестве топлива относительно чистый водород.

Это часто означает, что требуется обработка топлива для преобразования первичного топлива (такого как природный газ) в чистый водород. Этот процесс потребляет дополнительную энергию и требует специального оборудования. Высокотемпературные топливные элементы не нуждаются в данной дополнительной процедуре, так как они могут осуществлять "внутреннее преобразование" топлива при повышенных температурах, что означает отсутствие необходимости вкладывания денег в водородную инфраструктуру.

Топливные элементы на расплаве карбоната (РКТЭ).

Топливные элементы с расплавленным карбонатным электролитом являются высокотемпературными топливными элементами. Высокая рабочая температура позволяет непосредственно использовать природный газ без топливного процессора и топливного газа с низкой теплотворной способностью топлива производственных процессов и из других источников. Данный процесс был разработан в середине 1960-х гг. С того времени была улучшена технология производства, рабочие показатели и надежность.

Работа РКТЭ отличается от других топливных элементов. Данные элементы используют электролит из смеси расплавленных карбонатных солей. В настоящее время применяется два типа смесей: карбонат лития и карбонат калия или карбонат лития и карбонат натрия. Для расплавки карбонатных солей и достижения высокой степени подвижности ионов в электролите, работа топливных элементов с расплавленным карбонатным электролитом происходит при высоких температурах (650°C). КПД варьируется в пределах 60-80%.

При нагреве до температуры 650°C, соли становятся проводником для ионов карбоната (CO32-). Данные ионы проходят от катода на анод, где происходит объединение с водородом с образованием воды, диоксида углерода и свободных электронов. Данные электроны направляются по внешней электрической цепи обратно на катод, при этом генерируется электрический ток, а в качестве побочного продукта – тепло.

Реакция на аноде: CO32- + H2 => H2O + CO2 + 2e-
Реакция на катоде: CO2 + 1/2O2 + 2e- => CO32-
Общая реакция элемента: H2(g) + 1/2O2(g) + CO2(катод) => H2O(g) + CO2(анод)

Высокие рабочие температуры топливных элементов с расплавленным карбонатным электролитом имеют определенные преимущества. При высоких температурах, происходит внутренний риформинг природного газа, что устраняет необходимость использования топливного процессора. Помимо этого, к числу преимуществ можно отнести возможность использования стандартных материалов конструкции, таких как листовая нержавеющая сталь и никелевого катализатора на электродах. Побочное тепло может быть использовано для генерации пара высокого давления для различных промышленных и коммерческих целей.

Высокие температуры реакции в электролите также имеют свои преимущества. Применение высоких температур требует значительного времени для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. Данные характеристики позволяют использовать установки на топливных элементах с расплавленным карбонатным электролитом в условиях постоянной мощности. Высокие температуры препятствуют повреждению топливного элемента окисью углерода, "отравлению", и пр.

Топливные элементы с расплавленным карбонатным электролитом подходят для использования в больших стационарных установках. Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью 2,8 МВт. Разрабатываются установки с выходной мощностью до 100 МВт.

Топливные элементы на основе фосфорной кислоты (ФКТЭ).

Топливные элементы на основе фосфорной (ортофосфорной) кислоты стали первыми топливными элементами для коммерческого использования. Данный процесс был разработан в середине 1960-х гг., испытания проводились с 1970-х гг. С того времени была увеличена стабильность, рабочие показатели и снижена стоимость.

Топливные элементы на основе фосфорной (ортофосфорной) кислоты используют электролит на основе ортофосфорной кислоты (H3PO4) с концентрацией до 100%. Ионная проводимость ортофосфорной кислоты является низкой при низких температурах, по этой причине эти топливные элементы используются при температурах до 150–220°C.

Носителем заряда в топливных элементах данного типа является водород (H+, протон). Схожий процесс происходит в топливных элементах с мембраной обмена протонов (МОПТЭ), в которых водород, подводимый к аноду, разделяется на протоны и электроны. Протоны проходят по электролиту и объединяются с кислородом, получаемым из воздуха, на катоде с образованием воды. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток. Ниже представлены реакции, в результате которых генерируется электрический ток и тепло.

Реакция на аноде: 2H2 => 4H+ + 4e-
Реакция на катоде: O2(g) + 4H+ + 4e- => 2H2O
Общая реакция элемента: 2H2 + O2 => 2H2O

КПД топливных элементов на основе фосфорной (ортофосфорной) кислоты составляет более 40% при генерации электрической энергии. При комбинированном производстве тепловой и электрической энергии, общий КПД составляет около 85%. Помимо этого, учитывая рабочие температуры, побочное тепло может быть использовано для нагрева воды и генерации пара атмосферного давления.

Высокая производительность теплоэнергетических установок на топливных элементах на основе фосфорной (ортофосфорной) кислоты при комбинированном производстве тепловой и электрической энергии является одним из преимуществ данного вида топливных элементов. В установках используется окись углерода с концентрацией около 1,5%, что значительно расширяет возможность выбора топлива. Помимо этого, СО2 не влияет на электролит и работу топливного элемента, данный тип элементов работает с риформированным природным топливом. Простая конструкция, низкая степень летучести электролита и повышенная стабильность также являются преимущества данного типа топливных элементов.

Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью до 400 кВт. Установки на 11 МВт прошли соответствующие испытания. Разрабатываются установки с выходной мощностью до 100 МВт.

Топливные элементы с мембраной обмена протонов (МОПТЭ)

Топливные элементы с мембраной обмена протонов считаются самым лучшим типом топливных элементов для генерации питания транспортных средств, которое способно заменить бензиновые и дизельные двигатели внутреннего сгорания. Эти топливные элементы были впервые использованы НАСА для программы "Джемини". Сегодня разрабатываются и демонстрируются установки на МОПТЭ мощностью от 1Вт до 2 кВт.

В качестве электролита в этих топливных элементах используется твердая полимерная мембрана (тонкая пластмассовая пленка). При пропитывании водой этот полимер пропускает протоны, но не проводит электроны.

Топливом является водород, а носителем заряда – ион водорода (протон). На аноде молекула водорода разделяется на ион водорода (протон) и электроны. Ионы водорода проходят сквозь электролит к катоду, а электроны перемещаются по внешнему кругу и производят электрическую энергию. Кислород, который берется из воздуха, подается к катоду и соединяется с электронами и ионами водорода, образуя воду. На электродах происходят следующие реакции:

Реакция на аноде: 2H2 + 4OH- => 4H2O + 4e-
Реакция на катоде: O2 + 2H2O + 4e- => 4OH-
Общая реакция элемента: 2H2 + O2 => 2H2O

По сравнению с другими типами топливных элементов, топливные элементы с мембраной обмена протонов производят больше энергии при заданном объеме или весе топливного элемента. Эта особенность позволяет им быть компактными и легкими. К тому же, рабочая температура – менее 100°C, что позволяет быстро начать эксплуатацию. Эти характеристики, а также возможность быстро изменить выход энергии – лишь некоторые черты, которые делают эти топливные элементы первым кандидатом для использования в транспортных средствах.

Другим преимуществом является то, что электролитом выступает твердое, а не жидкое, вещество. Удержать газы на катоде и аноде легче с использованием твердого электролита, и поэтому такие топливные элементы более дешевы для производства. По сравнению с другими электролитами, при применении твердого электролита не возникает таких трудностей, как ориентация, возникает меньше проблем из-за появления коррозии, что ведет к большей долговечности элемента и его компонентов.

Твердооксидные топливные элементы (ТОТЭ)

Твердооксидные топливные элементы являются топливными элементами с самой высокой рабочей температурой. Рабочая температура может варьироваться от 600°C до 1000°C, что позволяет использовать различные типы топлива без специальной предварительной обработки. Для работы с такими высокими температурами используемый электролит представляет собой тонкий твердый оксид металла на керамической основе, часто сплав иттрия и циркония, который является проводником ионов кислорода (О2-). Технология использования твердооксидных топливных элементов развивается с конца 1950-х гг. и имеет две конфигурации: плоскостную и трубчатую.

Твердый электролит обеспечивает герметичный переход газа от одного электрода к другому, в то время как жидкие электролиты расположены в пористой подложке. Носителем заряда в топливных элементах данного типа является ион кислорода (О2-). На катоде происходит разделение молекул кислорода из воздуха на ион кислорода и четыре электрона. Ионы кислорода проходят по электролиту и объединяются с водородом, при этом образуется четыре свободных электрона. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток и побочное тепло.

Реакция на аноде: 2H2 + 2O2- => 2H2O + 4e-
Реакция на катоде: O2 + 4e- => 2O2-
Общая реакция элемента: 2H2 + O2 => 2H2O

КПД производимой электрической энергии является самым высоким из всех топливных элементов – около 60%. Помимо этого, высокие рабочие температуры позволяют осуществлять комбинированное производство тепловой и электрической энергии для генерации пара высокого давления. Комбинирование высокотемпературного топливного элемента с турбиной позволяет создать гибридный топливный элемент для повышения КПД генерирования электрической энергии до 70%.

Твердооксидные топливные элементы работают при очень высоких температурах (600°C–1000°C), в результате чего требуется значительное время для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. При таких высоких рабочих температурах не требуется преобразователь для восстановления водорода из топлива, что позволяет теплоэнергетической установке работать с относительно нечистым топливом, полученным в результате газификации угля или отработанных газов и т.п. Также данный топливный элемент превосходно подходит для работы с высокой мощностью, включая промышленные и крупные центральные электростанции. Промышленно выпускаются модули с выходной электрической мощностью 100 кВт.

Топливные элементы с прямым окислением метанола (ПОМТЭ)

Технология использования топливных элементов с прямым окислением метанола переживает период активного развития. Она успешно зарекомендовала себя в области питания мобильных телефонов, ноутбуков, а также для создания переносных источников электроэнергии. на что и нацелено будущее применение данных элементов.

Устройство топливных элементов с прямым окислением метанола схоже с топливных элементах с мембраной обмена протонов (МОПТЭ), т.е. в качестве электролита используется полимер, а в качестве носителя заряда – ион водорода (протон). Однако, жидкий метанол (CH3OH) окисляется при наличии воды на аноде с выделением СО2, ионов водорода и электронов, которые направляются по внешней электрической цепи, при этом генерируется электрический ток. Ионы водорода проходят по электролиту и вступает в реакцию с кислородом из воздуха и электронами, поступающих с внешней цепи, с образованием воды на аноде.

Реакция на аноде: CH3OH + H2O => CO2 + 6H+ + 6e-
Реакция на катоде: 3/2O2 + 6H+ + 6e- => 3H2O
Общая реакция элемента: CH3OH + 3/2O2 => CO2 + 2H2O

Разработка данных топливных элементов была начата в начале 1990-х гг. После создания улучшенных катализаторов и, благодаря другим недавним нововведениям, была увеличена удельная мощность и КПД до 40%.

Были проведены испытания данных элементов в температурном диапазоне 50-120°C. Благодаря низким рабочим температурам и отсутствию необходимости использования преобразователя, топливные элементы с прямым окислением метанола являются лучшим кандидатом для применения как в мобильных телефонах и других товарах широкого потребления, так и в двигателях автомобилей. Достоинством данного типа топливных элементов являются небольшие габариты, благодаря использованию жидкого топлива, и отсутствие необходимости использования преобразователя.

Щелочные топливные элементы (ЩТЭ)

Щелочные топливные элементы (ЩТЭ) – одна из наиболее изученных технологий, используемая с середины 1960-х гг. агентством НАСА в программах "Аполлон" и "Спейс Шаттл". На борту этих космических кораблей топливные элементы производят электрическую энергию и питьевую воду. Щелочные топливные элементы – одни из самых эффективных элементов, используемых для генерации электричества, эффективность выработки электроэнергии доходит до 70%.

В щелочных топливных элементах используется электролит, то есть водный раствор гидроксида калия, содержащийся в пористой стабилизированной матрице. Концентрация гидроксида калия может меняться в зависимости от рабочей температуры топливного элемента, диапазон которой варьируется от 65°С до 220°С. Носителем заряда в ЩТЭ является гидроксильный ион (ОН-), движущийся от катода к аноду, где он вступает в реакцию с водородом, производя воду и электроны. Вода, полученная на аноде, движется обратно к катоду, снова генерируя там гидроксильные ионы. В результате этого ряда реакций, проходящих в топливном элементе, производится электричество и, как побочный продукт, тепло:

Реакция на аноде: 2H2 + 4OH- => 4H2O + 4e-
Реакция на катоде: O2 + 2H2O + 4e- => 4OH-
Общая реакция системы: 2H2 + O2 => 2H2O

Достоинством ЩТЭ является то, что эти топливные элементы - самые дешевые в производстве, поскольку катализатором, который необходим на электродах, может быть любое из веществ, более дешевых чем те, что используются в качестве катализаторов для других топливных элементов. Кроме того, ЩТЭ работают при относительно низкой температуре и являются одними из самых эффективных топливных элементов - такие характеристики могут соответственно способствовать ускорению генерации питания и высокой эффективности топлива.

Одна из характерных особенностей ЩТЭ – высокая чувствительность к CO2, который может содержаться в топливе или воздухе. CO2 вступает в реакцию с электролитом, быстро отравляет его, и сильно снижает эффективность топливного элемента. Поэтому использование ЩТЭ ограничено закрытыми пространствами, такими как космические и подводные аппараты, они должны работать на чистом водороде и кислороде. Более того, такие молекулы, как CO, H2O и CH4, которые безопасны для других топливных элементов, а для некоторых из них даже являются топливом, вредны для ЩТЭ.

Полимерные электролитные топливные элементы (ПЭТЭ)

В случае полимерных электролитных топливных элементов полимерная мембрана состоит из полимерных волокон с водными областями, в которых существует проводимость ионов воды H2O+ (протон, красный) присоединяется к молекуле воды. Молекулы воды представляют проблему из-за медленного ионного обмена. Поэтому требуется высокая концентрация воды как в топливе, так и на выпускных электродах, что ограничивает рабочую температуру 100°С.

Твердокислотные топливные элементы (ТКТЭ)

В твердокислотных топливных элементах электролит (CsHSO4) не содержит воды. Рабочая температура поэтому составляет 100-300°С. Вращение окси анионов SO42-позволяет протонам (красный) перемещаться так, как показано на рисунке.

Как правило, твердокислотный топливный элемент представляет собой бутерброд, в котором очень тонкий слой твердокислотного компаунда располагается между двумя плотно сжатыми электродами, чтобы обеспечить хороший контакт. При нагреве органический компонент испаряется, выходя через поры в электродах, сохраняя способность многочисленных контактов между топливом (или кислородом на другом конце элементы), электролитом и электродами.опубликовано

Тип топливной элементы Рабочая температура Эффективность выработки электроэнергии Тип топлива Область применения
РКТЭ 550–700°C 50-70% Средние и большие установки
ФКТЭ 100–220°C 35-40% Чистый водород Большие установки
МОПТЭ 30-100°C 35-50% Чистый водород Малые установки
ТОТЭ 450–1000°C 45-70% Большинство видов углеводородного топлива Малые, средние и большие установки
ПОМТЭ 20-90°C 20-30% Метанол Переносные установки
ЩТЭ 50–200°C 40-65% Чистый водород Космические исследования
ПЭТЭ 30-100°C 35-50% Чистый водород Малые установки

Присоединяйтесь к нам в

Топливные элементы для привода автомобилей представляют со­бой электрохимические преобразователи энергии, заключенной в топливе, непосред­ственно в электроэнергию. В водородно­кислородном топливном элементе водород вступает в реакцию «холодного горения» с кислородом, в процессе которой образу­ется вода и генерируется электрический ток. Топливные элементы не содержат движу­щихся частей, работают без механического трения, с низким уровнем шума и без загряз­няющих окружающую среду выбросов.

Содержание

Принцип действия топливных элементов

Топливный элемент состоит из двух элемен­тов (анода и катода), разделенных электро­литом (см. рис. «Принцип действия топливного элемента типа PEM» ). Электролит непроницаем для электронов. Электроды соединяются друг с другом внешней электрической цепью.

На автомобилях в основном применяются топливные элементы с полимерной мембра­ной в качестве электролита, называемой также протонообменной (РЕМ ) (см. рис. «Структура топливного элемента типа РЕМ» ). Принцип действия топливных элементов описан ниже на примере элементов этого типа.

В топливном элементе типа РЕМ водород на­правляется к аноду, где он окисляется. При это образуются ионы Н+ (протоны) и электроны (см. рис. 1, а).

Анод: 2 Н 2 -» 4 Н + + 4 е — .

Электролит можно рассматривать как про­водящую протоны полимерную мембрану. Электролит проницаем для протонов, но не для электронов. Протоны Н+, образующиеся на аноде, проходят через мембрану и дости­гают катода. Для того чтобы через мембрану могли проходить протоны, она должна быть достаточно увлажнена. Кислород направ­ляется к катоду, где происходит его восстановление (см. рис. b, «Принцип действия топливного элемента типа PEM» ). Восстановление происходит за счет электронов, проходящих от анода к катоду по внешней электрической цепи.

Катод: O 2 + 4 е — -> 2 О 2- .

На следующей стадии реакции ионы О 2- реа­гируют с протонами с образованием воды.

Катод: 4 Н + + 2 О 2- -> 2 Н 2 O .

В результате общей реакции, протекающей в топливном элементе, из водорода и кисло­рода образуется вода (см. рис. с, «Принцип действия топливного элемента типа PEM» ). В отличие от реакции с образованием гремучего газа, в ходе которой водород и кислород реагируют друг с другом взрывообразно, здесь реакция протекает в форме «холодного горения», по­скольку стадии реакции протекают раздельно на аноде и катоде.

Общая реакция: 2 Н 2 + O 2 -> 2 Н 2 O .

Описанные выше реакции протекают на ка­талитических покрытиях электродов. В каче­стве катализатора чаще всего используется платина.

Теоретическое напряжение одного эле­мента

Теоретическое напряжение одного водородно-кислородного топливного эле­мента при температуре 25 °С составляет 1,23 В. Это значение получено из стандартных значений потенциалов электродов. Однако на практике, во время работы элемента, это напряжение не достигается; оно составляет 0,5-1,0 В. Потерю напряжения можно объяс­нить внутренним сопротивлением элемента или ограничениями, налагаемыми газовой диффузией (см. рис. «Электрические характеристики топливного элемента» ). В основном напря­жение зависит от температуры, стехиометри­ческих отношений водорода и кислорода к количеству произведенного электричества, парциального давления водорода и кисло­рода и плотности тока.

На автомобилях применяются батареи топливных элементов мощностью от 5 до 100 кВт. Чтобы получить высокие напряжения, требуемые для технического примене­ния элементов, элементы последовательно соединяются в батареи (см. рис.4 «Структура батареи топливных элементов»). Батареи могут включать от 40 до 450 элементов, т.е. их максимальное рабочее напряжение со­ставляет от 40 до 450 В.

Высокие значения электрического тока до­стигаются за счет соответствующей площади поверхности мембраны. Значения выходного тока батарей топливных элементов для авто­мобилей достигает 500 А.

Принцип действия системы топливных элементов

Для использования батареи топливных эле­ментов требуются подсистемы подачи водо­рода и кислорода (см. рис.5″Электропривод с системой топливных элементов» ). В принципе, эти системы могут быть реализованы самыми различными способами. Описываемый здесь вариант используется во многих случаях.

Система подачи водорода в топливные элементы

Запас водорода хранится в баллоне высокого давления (700 бар). При помощи редуктора давление водорода понижается приблизи­тельно до 10 бар, и водород поступает в га­зовый инжектор.

Инжектор представляет собой электромаг­нитный клапан, при помощи которого дав­ление водорода устанавливается на стороне анода. В отличие от топливных форсунок двигателей внутреннего сгорания инжектор водорода должен обеспечивать постоянный массовый расход. Типичное значение рас­хода водорода при мощности 100 кВт состав­ляет 2,1 г/с. Максимальное значение давле­ния водорода составляет 2,5 бар.

Для работы батареи топливных элементов требуется постоянный сквозной поток водо­рода на стороне анода (мера гомогенизации). С этой целью в системе организована рецир­куляция водорода.

Разрушающие анод инородные газы на стороне анода непрерывно удаляются через электромагнитный спускной клапан. Это предотвращает накопление инородных газов, выходящих из баллона, или диффузионных газов (азота, водяных паров) со стороны ка­тода. Клапан установлен на выпуске батареи, на стороне анода. Для слива избытка воды в тракте анода используется клапан, открытый при нулевом электрическом токе.

Водород, неизбежно выходящий во время слива воды, либо сильно разбавляется воз­духом, либо каталитически преобразуется в воду.

Подача кислорода в топливные элементы

Требуемый для электрохимической реакции кислород берется из окружающего воздуха. Необходимый массовый расход кислорода, составляющий, в зависимости от требуемой мощности батареи, до 100 г/с, подается компрессором. Кислород сжимается компрессо­ром максимум до 2,5 бар и подается на сто­рону катода топливного элемента. Давление в топливном элементе регулируется клапаном динамического регулирования давления, установленным в тракте выпуска отходящих газов на выходе топливного элемента.

Для обеспечения достаточного увлажне­ния полимерной мембраны, подаваемый в элемент воздух увлажняется либо при помощи дополнительной мембраны, либо пу­тем впрыска сконденсированной воды.

Тепловой баланс топливных элементов

Электрический к.п.д. топливных элементов составляет приблизительно 50%. Другими словами, в процессе преобразования химиче­ской энергии генерируется приблизительно такое же количество тепловой энергии, что и количество электрической энергии. Это тепло необходимо рассеивать. Рабочая темпера­тура топливных элементов типа РЕМ состав­ляет приблизительно 85 °С, что меньше тем­пературы двигателей внутреннего сгорания. Несмотря на более высокий к.п.д., радиатор и вентилятор радиатора, при использовании на автомобиле топливных элементов, должны быть увеличены.

Поскольку используемая охлаждающая жидкость находится в прямом контакте с топливными элементами, она должна быть электрически непроводящей (деионизован­ной). Циркуляция охлаждающей жидкости обеспечивается электрическим насосом. Расход охлаждающей жидкости составляет до 12 000 л/ч. Клапан регулирования темпе­ратуры распределяет поток охлаждающей жидкости между радиатором и перепускным каналом.

В системе используется охлаждающая жидкость, представляющая собой смесь деионизованной воды и этиленгликоля. Охлаждающую жидкость необходимо деио- ниозировать на автомобиле. С этой целью она пропускается через ионообменник, запол­ненный специальной смолой, и очищается в процессе удаления ионов. Проводимость охлаждающей жидкости должна составлять менее 5 мкСм/см.

Коэффициент полезного действия системы топливных элементов

В дополнение к быстрой готовности батареи топливных элементов к отдаче энергии при большинстве оптимальных рабочих условий важно обеспечить высокий к.п.д. системы.

На рис. «Коэффициент полезного действия батареи топливных элементов и системы топливных элементов» приведено сравнение к.п.д. ба­тареи топливных элементов с к.п.д. всей си­стемы. Часть электроэнергии потребляется вспомогательными компонентами, такими как компрессор, что снижает общий к.п.д. системы. Тем не менее, системы топливных элементов обладают более высоким к.п.д., чем двигатели внутреннего сгорания, осо­бенно при работе в диапазоне частичных нагрузок.

Безопасность топливных элементов автомобиля

В целях обеспечения безопасности на авто­мобиле установлено несколько датчиков кон­центрации водорода. Водород представляет собой газ без цвета и запаха, который при объемной концентрации порядка 4% превра­щает воздух в горючую смесь. Датчики могут определять концентрацию водорода, начиная с 1%.

Принцип действия привода автомобилей на топливных элементах

Автомобили на топливных элементах пред­ставляют собой электромобили, в которых электроэнергия для питания электропривода генерируется системой топливных элементов.

По ряду причин целесообразно включить в систему тяговую аккумуляторную батарею:

  • это позволяет запасать энергию во время рекуперативного торможения;
  • это способствует повышению динамиче­ских характеристик привода;
  • изменяя распределение нагрузки между системой топливных элементов и тяговой аккумуляторной батареей, можно еще бо­лее увеличить к.п.д. привода.

Поскольку тяговая аккумуляторная батарея явля­ется дополнительным источником энергии, такие автомобили известны под названием гибридизи­рованных автомобилей на топливных элементах. Отношение мощности тяговой аккумуляторной батареи к общей мощности (степень ги­бридизации) варьируется в зависимости от применения системы.

Обычно в качестве основного источника энергии для привода используются системы топливных элементов. Такие автомобили из­вестны под названием гибридных автомоби­лей на топливных элементах (FCHV ). Обычно системы топливных элементов имеют номи­нальную мощность 60-100 кВт. Тяговые ак­кумуляторные батареи имеют номинальную мощность до 30 кВт при емкости 1-2 кВтч.

В качестве альтернативного варианта тяговая аккумуляторная батарея может иметь значительно более высокую номинальную мощность и емкость и при необходимости заряжаться от системы то­пливных элементов. При этом достаточно иметь батарею топливных элементов с номинальной мощностью от 10 до 30 кВт. Автомобили с такой конфигурацией источников энергии известны под названием автомобилей на топливных элементах с расширенным диапазоном (FC-REX ).

Распределение электроэнергии между систе­мой топливных элементов, тяговой аккумуля­торной батареей и электроприводом осущест­вляется одним или более преобразователями постоянного напряжения. Различные конфигурации таких преобразователей, выбор которых зависит от применения, показаны на рис. «. Конфигурации преобразователей напряжения в системах привода на топливных элементах» . В зависимости от конфигурации напряжение питания электропривода идентично напряже­нию одного из двух источников электроэнер­гии (см. рис. а и b ), или изолировано от напряжения тяговой аккумуляторной батареи и батареи топливных элементов (см. рис. с ).

Система электропривода

Система электропривода включает силовой электронный блок (преобразователь) и элек­тродвигатель. Электродвигатель представляет собой синхронную или асинхронную электри­ческую машину, питание которой осуществля­ется от преобразователя таким образом, чтобы получить требуемый крутящий момент. По­скольку электропривод имеет высокую номи­нальную мощность (приблизительно 100 кВт), величина рабочего напряжения может дости­гать 450 В. В области автомобилестроения ис­пользуются термины «высокое напряжение» и «электрическая система высокого напряже­ния». Электрическая система высокого напря­жения изолирована от массы автомобиля.

Во время торможения автомобиля электро­двигатель переходит в генераторный режим и генерирует электрический ток. Электроэнергия запасается в тяговой аккумуляторной батарее.

При помощи преобразователя высокое на­пряжение постоянного тока преобразуется в многофазное переменное напряжение, амплитуда которого регулируется в зависи­мости от требуемого крутящего момента. Как правило, используются преобразователи с выходными каскадами на биполярных тран­зисторах с изолированным затвором (IGBT ).

Тяговая аккумуляторная батарея

В зависимости от степени гибридизации использу­ются аккумуляторные батареи высокой емкости или высокой энергии с напряжением от 150 до 400 В. В качестве аккумуляторной батареи высокой емкости используются никель-металлгидридные или литий-ионные аккумуляторные батареи, в то время как в качестве аккумуляторных батарей высо­кой энергии — только литий-ионные аккумуляторы. Система мониторинга тяговой аккумулятор­ной батареи контролирует степень зарядки и емкость аккумуляторной батареи.

Преобразователь постоянного напряжения тяговой АКБ

Преобразователь постоянного напряжения тя­говой аккумуляторной батареи осуществляет регулирование тока зарядки тяговой аккуму­ляторной батареи и выходного тока (до 300 А) . Некоторые конфигурации системы позволяют обойтись без этого преобразователя.

Преобразователь постоянного напряжения батареи топливных элементов

Еще одним преобразователем постоянного напряжения является преобразователь на­пряжения батареи топливных элементов, осуществляющий регулирование выходного тока в пределах до 500 А. Некоторые конфи­гурации системы позволяют обойтись без этого преобразователя.

Преобразователь постоянного напряжения 12 В

Так же как на обычных автомобилях, на ав­томобилях на топливных элементах имеется электрическая система напряжением 12 В. Напряжение 12 В преобразуется из высокого напряжения. Для этой цели служит преобразо­ватель постоянного напряжения, включенный между двумя системами. Из соображений без­опасности этот преобразователь электрически изолирован. Он работает однонаправленно или двунаправленно и имеет номинальную мощность до 3 кВт.

Перспективы системы приводов на топливных элементах

Системы приводов на топливных элементах уже продемонстрировали свою пригодность в повседневной эксплуатации. Однако, для коммерческого использования в системах приводов автомобилей топливные элементы должны быть усовершенствованы в отноше­нии экономичности и возможности серий­ного производства.

Упрощение системы дает снижение затрат и повышение надежности. Одним из направ­лений является разработка новых полимер­ных мембран для топливных элементов, не требующих увлажнения образующихся в ходе реакции газов и в то же время позволяющих повысить рабочую температуру.

Кроме того, необходимо значительно сни­зить стоимость всех компонентов. В этом отношении большой потенциал заключается в уменьшении количества платины в катали­тическом слое топливного элемента.

В следующей статье я расскажу о .


Квест Древний арсенал - одно из самых интересных и полезных побочных заданий в Horizon Zero Dawn. В качестве награды за его выполнение вы получите костюм Ткач щита. На наш вкус, это лучшая броня в игре. Она защищает Элой силовым полем, которое поглощает весь входящий урон, пока не кончится заряд. Вы получите этот квест, когда найдете первый топливный элемент или сам бункер с древней броней. Надо сказать, что получить его гораздо проще, чем выполнить.

Где найти все топливные элементы в Horizon Zero Dawn?

Всего в игре 5 топливных элементов, которые будут встречаться вам во время прохождения сюжетных миссий. Некоторые из них легко пропустить, но не волнуйтесь по этому поводу. Вы всегда сможете вернуться за ними позже. Если вы умрете, вам придется отправиться за топливным элементом еще раз. Он не сохраняется в вашем инвентаре мгновенно, нужно добраться до контрольной точки. Имейте это в виду. Все элементы отмечены ярким зеленым значком, так что вряд ли вы просмотрите их, оказавшись рядом. Первые два элемента используются, чтобы открыть дверь. Еще три нужны, чтобы разблокировать само устройство с броней.

Первый топливный элемент

Он находится в локации Великой матери и доступен во время прохождения миссии "Утроба горы". Очень важно не проморгать его во время этого квеста, так как после выхода из области ворота с доступом в эту локацию заблокируются и откроются в следующий раз только ближе к концу игры, после выполнения миссии "Сердце Норы".

Этот топливный элемент легко найти, если знаете где искать. Поэтому первым делом доберитесь до отметки Элой, показанной на скриншоте ниже. Прямо перед вами будет дверь с переключателем. Открываем ее и проходим вперед. Следующую дверь тоже открываем и оказываемся в большой комнате. Тут нам надо повернуть направо и упереться в дверь с замком, который мы открыть не сможем.

Тем не менее, если вы осмотритесь по сторонам, то заметите слева большую нишу со свечами внутри. Полезайте в нее и двигайтесь вперед по шахте, пока не упретесь в топливную ячейку.

Второй топливный элемент

Этот элемент можно найти в тех руинах, по которым Элой лазила еще ребенком. В детском возрасте забрать его не получится, так что придется вернуться попозже. Доберитесь до зеленого маркера и осмотритесь. Вход в руины представляет из себя отверстие в земле. Аккуратно спуститесь вниз.

Пусть через руины достаточно прост, так что маловероятно, что вы заблудитесь. По сути вам нужно добраться до отметки, показанной на скриншоте ниже. Там вы увидите перед собой комнату, вход в которую блокируют заостренные скальные образования. Разломайте их своим копьем и найдете второй топливный элемент.

Третий топливный элемент

Чтобы найти следующий топливный элемент в Horizon Zero Dawn, придется попроходить сюжет. Нам нужна миссия Предел мастера. Не забудьте вернуться к этому гайду, когда до нее доберетесь. В ходе этой миссии вам придется забраться на очень высокое здание. В какой-то момент игра скажет вам что-то вроде: "Найдите кабинет Фаро, чтобы получить больше информации о докторе Собек".

В этот момент вам нужно обернуться и найти у себя за спиной стену, по которой можно забраться наверх. Пройдите весь путь и топливный элемент будет ждать вас на земле прямо на самом верху башни (12 этаж).

Четвертый топливный элемент

Этот элемент можно найти во время прохождения миссии "Клад смерти" в катакомбах.

Для начала доберитесь до отметки на третьем уровне, показанной на скриншоте ниже. Перед вами будет запертая дверь. Чтобы ее разблокировать, нужно пройти налево и спрыгнуть вниз. Там вы найдете три головоломки с поворотными замками. Возле каждой есть шкаф, в котором спрятано решение задачки. Просто просканируйте его. Две головоломки расположены на уровень ниже двери, еще одна - на том же уровне. Когда решите все три, дверь сверху откроется и вы получите свой топливный элемент.

Пятый топливный элемент

Последний топливный элемент в Horizon Zero Dawn вы найдете во время выполнения миссии "Упавшая гора" в локации ГАЙЯ Прайм.

Доберитесь до места на третьем уровне, отмеченного на скриншоте ниже. Перед вами будет место, с которого нужно спуститься вниз по веревке. Вместо этого, повернитесь налево и аккуратно спуститесь вниз по склону горы. Там вы увидите вход в пещеру. В самом конце вас будет ждать последний элемент.

Приветствую вас, Изгои. Мир игры Horizon Zero Dawn может быть жесток к игроку. А значит, без хорошей экипировки и лучшего оружия вам не обойтись, иначе машины могут надавать вам люлей. И лучше всего, если это будет не просто хорошая броня, а практически лучшая. И по старой традиции видеоигр, дразнят нас ею практически с самого начала.

Как я уже писал выше, практически на старте путешествий Эллой вы наткнётесь на бункер Предтеч , который так удачно расположился неподалёку от земель племени Нора. За дверью этого бункера вы можете разглядеть очень привлекательную с виду броню. И это не просто броня, это «Ткач щита ». Но просто так дверь не открыть, сначала придётся разыскать пять топливных элементов . Но где их найти? Сейчас разберёмся.

Первый элемент. Локация – Сердце Матери. Задание – Утроба Матери.

Хотя этот элемент очень просто найти, всегда есть подвох. Он заключается в том, что найти его можно ещё до выхода в открытый мир. Вот только, если вы его проворонили, то вернуться в эту локацию у вас получится уже на позднем этапе игры, после того, как выполните задание «Сердце Нора ».

Если же вы только начали игру, то всё просто. Когда вы встанете с кровати и прогуляетесь через несколько комнат, в одной из них будет герметичная дверь, которую никак не открыть.

Оглядитесь, рядом будет вентиляционная шахта. Да, вы всё правильно поняли. Проходим по шахте и оказываемся прямиком позади этой двери. На полу, рядом со свечами и будет находиться нужный нам элемент.

Второй элемент. Локация – Руины.

Знаю, здесь вы уже бывали в детстве, но тем не менее, сюда стоит вернуться не только ради ностальгических воспоминаний. Здесь вы найдёте второй топливный элемент. Т.к. вы уже подросли, то и высота не будет такой большой, не бойтесь, прыгайте в дыру в земле.

Вам необходимо попасть на первый уровень развалин. Двигайтесь в область, подсвеченную фиолетовым на карте. Там вы найдёте дверь, которую можно открыть при помощи копья.

Как только с дверь будет покончено, поднимаемся по лестнице и сворачиваем направо. Перед вами окажутся сталактиты, через которые не получалось пробраться в детстве. Но так как теперь мы большие и сильные, то снова берём копьё и ломаем преграду. Топливный элемент будет лежать на столе.

Третий элемент. Локация – Предел Мастера. Задание – Предел Мастера.

Поскольку это сюжетное задание, то проблем с нахождением возникнуть не должно. Чтобы отыскать нужный нам предмет, придётся забраться на самый верхний, двенадцатый уровень руин. И даже капельку выше. Ищите остатки здания и карабкайтесь по ним до тех пор, пока не попадёте на площадку.

Здесь вы и найдёте топливный элемент. Будьте осторожны, пока спускаетесь вниз, не оступитесь.

Четвёртый элемент. Локация – Клад Смерти. Задание – Клад Смерти.

Как и предыдущий, этот элемент вы найдёте в северной части карты. И это снова сюжетное задание, так что случайно пропустить или не заметить эту локацию у вас не получится.

На третьем уровне локации будет расположена герметичная дверь, но вот беда, без питания. Ну, ничего, восстановим, не привыкать.

Спускаемся на уровень ниже и ищем там блоки регуляторов.

Последовательность для левого блока: вверх, вправо, влево, вниз.

Последовательность для правого блока: первые два регулятора не трогаем, оставшиеся два вниз.

Когда закончили с этими, поднимаемся на уровень вверх, там так же находим блок регуляторов, на этот раз последний. Последовательность: вверх, вниз, влево, направо.

Если вы всё правильно ввели, то регуляторы изменят свой цвет. Теперь возвращаемся к двери, питание восстановлено, за ней и будет прятаться элемент.

Пятый элемент (все совпадения случайны!) Локация – ГЕЯ Прайм. Задание – Павшая Гора.

Ну что ж, поиски элементов подходят к концу. На очереди последний. И, кстати, это тоже сюжетное задание.

Когда будете исследовать третий уровень, то в какой-то момент наткнётесь на пропасть, в которую можно спуститься при помощи верёвки. Не введитесь, это завлекаловка от хитрых разработчиков. На самом деле, вам нужно повернуть направо и поискать в скрытой пещере. Попасть туда можно, осторожно спустившись по краю.

Идите сквозь пещеру и в самом её конце обнаружите последний элемент.

Вот и всё, все элементы у вас. Но если по какой-то причине у вас возникли трудности, то вот видео-руководство, которое вам поможет.

ДРЕВНИЙ АРСЕНАЛ

Итак, все топливные элементы у нас, пора получить-таки заветное снаряжение.

Вставляем элементы в пустые ячейки, последовательность не важна. Как вы могли заметить, зажглись регуляторы. Время для решения очередной головоломки.

Последовательность такая: вверх, направо, вниз, влево, вверх.

Но, увы, придётся решить ещё одну задачку с регуляторами. На этот раз, чтобы получить доспехи. Довставляем оставшиеся топливные элементы.

Подсказка: 0 градусов находится почему-то вверху, следовательно последовательность для направления регуляторов: вправо, влево, вверх, вправо, влево.

Вот и всё, поздравляю, «Ткач Щита » теперь ваш. Это очень сильная штука, которая может сделать вас неуязвимой. Только не забывайте следить за цветом. Белый - хорошо. Красный - защита спала.