Ядерный распад и синтез. Ядерный синтез

ЯДЕРНЫЙ СИНТЕЗ, термоядерный синтез, реакция слияния легких атомных ядер в более тяжелые ядра, происходящая при сверхвысокой температуре и сопровождающаяся выделением огромных количеств энергии. Ядерный синтез – это реакция, обратная делению атомов: в последней энергия выделяется за счет расщепления тяжелых ядер на более легкие. См. также ЯДЕР ДЕЛЕНИЕ; АТОМНАЯ ЭНЕРГЕТИКА.

Согласно современным астрофизическим представлениям, основным источником энергии Солнца и других звезд является происходящий в их недрах термоядерный синтез. В земных условиях он осуществляется при взрыве водородной бомбы. Термоядерный синтез сопровождается колоссальным энерговыделением на единицу массы реагирующих веществ (примерно в 10 миллионов раз большим, чем в химических реакциях). Поэтому представляет большой интерес овладеть этим процессом и на его основе создать дешевый и экологически чистый источник энергии. Однако несмотря на то, что исследованиями управляемого термоядерного синтеза (УТС) заняты большие научно-технические коллективы во многих развитых странах, предстоит решить еще немало сложных проблем, прежде чем промышленное производство термоядерной энергии станет реальностью.

Современные атомные станции, использующие процесс деления, лишь отчасти удовлетворяют мировые потребности в электроэнергии. Топливом для них служат естественные радиоактивные элементы уран и торий, распространенность и запасы которых в природе весьма ограничены; поэтому для многих стран возникает проблема их импорта. Главным компонентом термоядерного топлива является изотоп водорода дейтерий, который содержится в морской воде. Запасы его общедоступны и очень велики (мировой океан покрывает

~ 71% площади поверхности Земли, а на долю дейтерия приходится ок. 0,016% общего числа атомов водорода, входящих в состав воды). Помимо доступности топлива, термоядерные источники энергии имеют следующие важные преимущества перед атомными станциями: 1) реактор УТС содержит гораздо меньше радиоактивных материалов, чем атомный реактор деления, и поэтому последствия случайного выброса радиоактивных продуктов менее опасны; 2) при термоядерных реакциях образуется меньше долгоживущих радиоактивных отходов; 3) УТС допускает прямое получение электроэнергии. ФИЗИЧЕСКИЕ ОСНОВЫ ЯДЕРНОГО СИНТЕЗА Успешное осуществление реакции синтеза зависит от свойств используемых атомных ядер и возможности получения плотной высокотемпературной плазмы, которая необходима для инициирования реакции. Ядерные силы и реакции. Энерговыделение при ядерном синтезе обусловлено действующими внутри ядра чрезвычайно интенсивными силами притяжения; эти силы удерживают вместе входящие в состав ядра протоны и нейтроны. Они очень интенсивны на расстояниях ~ 10 –13 см и чрезвычайно быстро ослабевают с увеличением расстояния. Помимо этих сил, положительно заряженные протоны создают электростатические силы отталкивания. Радиус действия электростатических сил гораздо больше, чем у ядерных, поэтому они начинают преобладать, когда ядра удалены друг от друга.

В нормальных условиях кинетическая энергия ядер легких атомов слишком мала для того, чтобы, преодолев электростатическое отталкивание, они могли сблизиться и вступить в ядерную реакцию. Однако отталкивание можно преодолеть «грубой» силой, например сталкивая ядра, обладающие высокой относительной скоростью. Дж.Кокрофт и Э.Уолтон использовали этот принцип в своих экспериментах, проводившихся в 1932 в Кавендишской лаборатории (Кембридж, Великобритания). Облучая литиевую мишень ускоренными в электрическом поле протонами, они наблюдали взаимодействие протонов с ядрами лития

Li . С тех пор изучено большое число подобных реакций. Реакции с участием наиболее легких ядер – протона ( p ), дейтрона ( d ) и тритона ( t ), соответствующих изотопам водорода протию 1 H , дейтерию 2 H и тритию 3 H , – а также «легкого» изотопа гелия 3 He и двух изотопов лития 6 Li и 7 Li представлены в приведенной ниже таблице. Здесь n – нейтрон, g – гамма-квант. Энергия, выделяющаяся в каждой реакции, дана в миллионах электрон-вольт (МэВ). При кинетической энергии 1 МэВ скорость протона составляет 14 500 км / с. См. также АТОМНОГО ЯДРА СТРОЕНИЕ. Как показал Г.Гамов, вероятность реакции между двумя сближающимися легкими ядрами пропорциональна , где e – основание натуральных логарифмов, Z 1 и Z 2 – числа протонов во взаимодействующих ядрах, W – энергия их относительного сближения, а K – постоянный множитель. Энергия, необходимая для осуществления реакции, зависит от числа протонов в каждом ядре. Если оно больше трех, то эта энергия слишком велика и реакция практически неосуществима. Таким образом, с возрастанием Z 1 и Z 2 вероятность реакции уменьшается.

Вероятность того, что два ядра вступят во взаимодействие, характеризуется «сечением реакции», измеряемом в барнах (1 б = 10

–24 см 2 ). Сечение реакции – это площадь эффективного поперечного сечения ядра, в которое должно «попасть» другое ядро, чтобы произошло их взаимодействие. Сечение реакции дейтерия с тритием достигает максимальной величины (~ 5 б), когда взаимодействующие частицы имеют энергию относительного сближения порядка 200 кэВ. При энергии 20 кэВ сечение становится меньше 0,1 б.

Из миллиона попадающих на мишень ускоренных частиц не более одной вступает в ядерное взаимодействие. Остальные рассеивают свою энергию на электронах атомов мишени и замедляются до скоростей, при которых реакция становится невозможной. Следовательно, способ бомбардировки твердой мишени ускоренными ядрами (как это было в эксперименте Кокрофта – Уолтона) для УТС непригоден, так как получаемая при этом энергия намного меньше затраченной.

Термоядерные топлива. Реакции с участием p , играющие основную роль в процессах ядерного синтеза на Солнце и других гомогенных звездах, в земных условиях не представляют практического интереса, поскольку имеют слишком малое сечение. Для осуществления термоядерного синтеза на земле более подходящим видом топлива, как упоминалось выше, является дейтерий.

Но наиболее вероятная реакция реализуется в равнокомпонентной смеси дейтерия и трития (

DT -смесь). К сожалению, тритий радиоактивен и, ввиду короткого периода полураспада (T 1/2 ~ 12,3 года) в природе практически не встречается. Его получают искусственным путем в реакторах деления, а также как побочный продукт в реакциях с дейтерием. Однако отсутствие в природе трития не является препятствием для использования DT – реакции синтеза, т.к. тритий можно производить, облучая изотоп 6 Li образующимися при синтезе нейтронами: n + 6 Li ® 4 He + t . Если окружить термоядерную камеру слоем 6 Li (в природном литии его содержится 7%), то можно осуществить полное воспроизводство расходуемого трития. И хотя на практике часть нейтронов неизбежно теряется, их потерю легко восполнить, вводя в оболочку такой элемент, как бериллий, ядро которого, при попадании в него одного быстрого нейтрона, испускает два . Принцип действия термоядерного реактора. Реакция слияния легких ядер, цель которой – получение полезной энергии – называется управляемым термоядерным синтезом. Осуществляется он при температурах порядка сотен миллионов кельвинов. Такой процесс реализован пока только в лабораториях. Временн е и температурные условия. Получение полезной термоядерной энергии возможно лишь при выполнении двух условий. Во-первых, предназначенная для синтеза смесь должна быть нагрета до температуры, при которой кинетическая энергия ядер обеспечивает высокую вероятность их слияния при столкновении. Во-вторых, реагирующая смесь должна быть очень хорошо термоизолирована (т.е. высокая температура должна поддерживаться достаточно долго, чтобы произошло необходимое число реакций и выделившаяся за счет этого энергия превышала энергию, затраченную на нагрев топлива). В количественной форме это условие выражается следующим образом. Чтобы нагреть термоядерную смесь, одному кубическому сантиметру ее объема надо сообщить энергию P 1 = knT , где k – численный коэффициент, n – плотность смеси (количество ядер в 1 см 3), T – требуемая температура. Для поддержания реакции сообщенная термоядерной смеси энергия должна сохраняться в течение времени t . Чтобы реактор был энергетически выгоден, нужно, чтобы за это время в нем выделилось термоядерной энергии больше, чем было потрачено на нагрев. Выделившаяся энергия (также на 1 см 3 ) выражается следующим образом: где f(T ) – коэффициент, зависящий от температуры смеси и ее состава, R – энергия, выделяющаяся в одном элементарном акте синтеза. Тогда условие энергетической рентабельности P 2 > P 1 примет вид или Последнее неравенство, известное под названием критерия Лоусона, представляет собой количественное выражение требований к совершенству термоизоляции. Правая часть – «число Лоусона» – зависит только от температуры и состава смеси, и чем оно больше, тем жестче требования к термоизоляции, т.е. тем труднее создать реактор. В области приемлемых температур число Лоусона для чистого дейтерия составляет 10 16 с / см 3 , а для равнокомпонентной DT -смеси – 2 Ч 10 14 с / см 3 . Таким образом, DT -смесь является более предпочтительным термоядерным топливом.

В соответствии с критерием Лоусона, определяющим энергетически выгодную величину произведения плотности на время удержания, в термоядерном реакторе следует использовать по возможности большие

n либо t . Поэтому исследования УТС разошлись по двум разным направлениям: в первом исследователи пытались с помощью магнитного поля в течение достаточно длительного времени удерживать относительно разреженную плазму; во втором – с помощью лазеров на короткое время создать плазму с очень высокой плотностью. Первому подходу было посвящено гораздо больше работ, чем второму. Магнитное удержание плазмы. Во время реакции синтеза плотность горячего реагента должна оставаться на уровне, который обеспечивал бы достаточно высокий выход полезной энергии на единицу объема при давлении, которое в состоянии выдержать камера с плазмой. Например, для смеси дейтерий – тритий при температуре 10 8 К выход определяется выражением Если принять P равным 100 Вт / см 3 (что примерно соответствует энергии, выделяемой топливными элементами в ядерных реакторах деления), то плотность n должна составлять ок. 10 15 ядер / см 3 , а соответствующее давление nT – примерно 3 МПа. Время удержания при этом, согласно критерию Лоусона, должно быть не менее 0,1 с. Для дейтерий-дейтериевой плазмы при температуре 10 9 К В этом случае при P = 100 Вт / см 3 , n » 3 Ч 10 15 ядер / см 3 и давлении примерно 100 МПа требуемое время удержания составит более 1 с. Заметим, что указанные плотности составляют лишь 0,0001 от плотности атмосферного воздуха, так что камера реактора должна откачиваться до высокого вакуума.

Приведенные выше оценки времени удержания, температуры и плотности являются типичными минимальными параметрами, необходимыми для работы термоядерного реактора, причем легче они достигаются в случае дейтерий-тритиевой смеси. Что касается термоядерных реакций, протекающих при взрыве водородной бомбы и в недрах звезд, то следует иметь в виду, что в силу совершенно иных условий в первом случае они протекают очень быстро, а во втором – крайне медленно по сравнению с процессами в термоядерном реакторе.

Плазма. При сильном нагреве газа его атомы частично или полностью теряют электроны, в результате чего образуются положительно заряженные частицы, называемые ионами, и свободные электроны. При температурах более миллиона градусов газ, состоящий из легких элементов, полностью ионизуется, т.е. каждый его атом утрачивает все свои электроны. Газ в ионизованном состоянии называется плазмой (термин введен И.Ленгмюром ). Свойства плазмы существенно отличаются от свойств нейтрального газа. Поскольку в плазме присутствуют свободные электроны, плазма очень хорошо проводит электрический ток, причем ее проводимость пропорциональна T 3/2 . Плазму можно нагревать, пропуская через нее электрический ток. Проводимость водородной плазмы при 10 8 К такая же, как у меди при комнатной температуре. Очень велика и теплопроводность плазмы.

Чтобы удержать плазму, например, при температуре 10

8 К, ее нужно надежно термоизолировать. В принципе изолировать плазму от стенок камеры можно, поместив ее в сильное магнитное поле. Это обеспечивается силами, которые возникают при взаимодействии токов с магнитным полем в плазме.

Под действием магнитного поля ионы и электроны движутся по спиралям вдоль его силовых линий. Переход с одной силовой линии на другую возможен при столкновениях частиц и при наложении поперечного электрического поля. В отсутствие электрических полей высокотемпературная разреженная плазма, в которой столкновения происходят редко, будет лишь медленно диффундировать поперек магнитных силовых линий. Если силовые линии магнитного поля замкнуть, придав им форму петли, то частицы плазмы будут двигаться вдоль этих линий, удерживаясь в области петли. Кроме такой замкнутой магнитной конфигурации для удержания плазмы были предложены и открытые системы (с силовыми линиями поля, выходящими из торцов камеры наружу), в которых частицы остаются внутри камеры благодаря ограничивающим движение частиц магнитным «пробкам». Магнитные пробки создаются у торцов камеры, где в результате постепенного увеличения напряженности поля образуется сужающийся пучок силовых линий.

На практике осуществить магнитное удержание плазмы достаточно большой плотности оказалось далеко не просто: в ней часто возникают магнитогидродинамические и кинетические неустойчивости.

Магнитогидродинамические неустойчивости связаны с изгибами и изломами магнитных силовых линий. В этом случае плазма может начать перемещаться поперек магнитного поля в виде сгустков, за несколько миллионных долей секунды уйдет из зоны удержания и отдаст тепло стенкам камеры. Такие неустойчивости можно подавить, придав магнитному полю определенную конфигурацию.

Кинетические неустойчивости очень многообразны и изучены они менее детально. Среди них есть такие, которые срывают упорядоченные процессы, как, например, протекание через плазму постоянного электрического тока или потока частиц. Другие кинетические неустойчивости вызывают более высокую скорость поперечной диффузии плазмы в магнитном поле, чем предсказываемая теорией столкновений для спокойной плазмы.

Системы с замкнутой магнитной конфигурацией. Если к ионизованному проводящему газу приложить сильное электрическое поле, то в нем возникнет разрядный ток, одновременно с которым появится окружающее его магнитное поле. Взаимодействие магнитного поля с током приведет к появлению действующих на заряженные частицы газа сжимающих сил. Если ток протекает вдоль оси проводящего плазменного шнура, то возникающие радиальные силы подобно резиновым жгутам сжимают шнур, отодвигая границу плазмы от стенок содержащей ее камеры. Это явление, теоретически предсказанное У.Беннеттом в 1934 и впервые экспериментально продемонстрированное А.Уэром в 1951, названо пинч-эффектом. Метод пинча применяется для удержания плазмы; примечательной его особенностью является то, что газ нагревается до высоких температур самим электрическим током (омический нагрев). Принципиальная простота метода обусловила его использование в первых же попытках удержания горячей плазмы, а изучение простого пинч-эффекта, несмотря на то, что впоследствии он был вытеснен более совершенными методами, позволило лучше понять проблемы, с которыми экспериментаторы сталкиваются и сегодня.

Помимо диффузии плазмы в радиальном направлении, наблюдается еще продольный дрейф и выход ее через торцы плазменного шнура. Потери через торцы можно устранить, если придать камере с плазмой форму бублика (тора). В этом случае получается тороидальный пинч.

Для описанного выше простого пинча серьезной проблемой являются присущие ему магнитогидродинамические неустойчивости. Если у плазменного шнура возникает небольшой изгиб, то плотность силовых линий магнитного поля с внутренней стороны изгиба увеличивается (рис. 1). Магнитные силовые линии, которые ведут себя подобно сопротивляющимся сжатию жгутам, начнут быстро «выпучиваться», так что изгиб будет увеличиваться вплоть до разрушения всей структуры плазменного шнура. В результате плазма вступит в контакт со стенками камеры и охладится. Чтобы исключить это губительное явление, до пропускания основного аксиального тока в камере создают продольное магнитное поле, которое вместе с приложенным позднее круговым полем «выпрямляет» зарождающийся изгиб плазменного шнура (рис. 2). Принцип стабилизации плазменного шнура аксиальным полем положен в основу двух перспективных проектов термоядерных реакторов – токамака и пинча с обращенным магнитным полем. Открытые магнитные конфигурации. В системах открытой конфигурации проблема удержания плазмы в продольном направлении решается путем создания магнитного поля, силовые линии которого вблизи торцов камеры имеют вид сужающегося пучка. Заряженные частицы движутся по винтовым линиям вдоль силовой линии поля и отражаются от областей с более высокой напряженностью (где плотность силовых линий больше). Такие конфигурации (рис. 3) называются ловушками с магнитными пробками, или магнитными зеркалами. Магнитное поле создается двумя параллельными катушками, в которых протекают сильные одинаково направленные токи. В пространстве между катушками силовые линии образуют «бочку», в которой и располагается удерживаемая плазма. Однако экспериментально установлено, что такие системы вряд ли в состоянии удержать плазму той степени плотности, которая необходима для работы реактора. Сейчас на этот метод удержания не возлагается больших надежд. См. также МАГНИТНАЯ ГИДРОДИНАМИКА. Инерциальное удержание. Теоретические расчеты показывают, что термоядерный синтез возможен и без применения магнитных ловушек. Для этого осуществляется быстрое сжатие специально приготовленной мишени (шарика из дейтерия радиусом ок. 1 мм) до столь высоких плотностей, что термоядерная реакция успевает завершиться прежде, чем произойдет испарение топливной мишени. Сжатие и нагрев до термоядерных температур можно производить сверхмощными лазерными импульсами, со всех сторон равномерно и одновременно облучающими топливный шарик (рис. 4). При мгновенном испарении его поверхностных слоев вылетающие частицы приобретают очень высокие скорости, и шарик оказывается под действием больших сжимающих сил. Они аналогичны движущим ракету реактивным силам, с той лишь разницей, что здесь эти силы направлены внутрь, к центру мишени. Этим методом можно создать давления порядка 10 11 МПа и плотности, в 10 000 раз превышающие плотность воды. При такой плотности почти вся термоядерная энергия высвободится в виде небольшого взрыва за время ~ 10 –12 с. Происходящие микровзрывы, каждый из которых эквивалентен 1–2 кг тротила, не вызовут повреждения реактора, а осуществление последовательности таких микровзрывов через короткие промежутки времени позволило бы реализовать практически непрерывное получение полезной энергии. Для инерциального удержания очень важно устройство топливной мишени. Мишень в виде концентрических сфер из тяжелого и легкого материалов позволит добиться максимально эффективного испарения частиц и, следовательно, наибольшего сжатия.

Расчеты показывают, что при энергии лазерного излучения порядка мегаджоуля (10

6 Дж) и кпд лазера не менее 10% производимая термоядерная энергия должна превышать энергию, израсходованную на накачку лазера. Термоядерные лазерные установки имеются в исследовательских лабораториях России, США, Западной Европы и Японии. В настоящее время изучается возможность использования вместо лазерного луча пучка тяжелых ионов или сочетания такого пучка со световым лучом. Благодаря современной технике такой способ инициирования реакции имеет преимущество перед лазерным, поскольку позволяет получить больше полезной энергии. Недостаток заключается в трудности фокусировки пучка на мишени. УСТАНОВКИ С МАГНИТНЫМ УДЕРЖАНИЕМ Магнитные методы удержания плазмы исследуются в России, США, Японии и ряде европейских стран. Главное внимание уделяется установкам тороидального типа, таким, как токамак и пинч с обращенным магнитным полем, появившимся в результате развития более простых пинчей со стабилизирующим продольным магнитным полем.

Для удержания плазмы при помощи тороидального магнитного поля

B j необходимо создать условия, при которых плазма не смещалась бы к стенкам тора. Это достигается «скручиванием» силовых линий магнитного поля (т.н. «вращательным преобразованием»). Такое скручивание осуществляется двумя способами. В первом способе через плазму пропускается ток, приводящий к конфигурации уже рассмотренного устойчивого пинча. Магнитное поле тока B q Ј –B q вместе с B j создает суммарное поле с необходимым закручиванием. Если B j B q , то получается конфигурация, известная под названием токамак (аббревиатура выражения «ТОроидальная КАмера с МАгнитными Катушками»). Токамак (рис. 5) был разработан под руководством Л.А.Арцимовича в Институте атомной энергии им. И.В.Курчатова в Москве. При B j ~ B q получается конфигурация пинча с обращенным магнитным полем.

Во втором способе для обеспечения равновесия удерживаемой плазмы применяются специальные винтовые обмотки вокруг тороидальной плазменной камеры. Токи в этих обмотках создают сложное магнитное поле, приводящее к закручиванию силовых линий суммарного поля внутри тора. Такая установка, называемая стелларатором, была разработана в Принстонском университете

(США) Л.Спитцером с сотрудниками. Токамак. Важным параметром, от которого зависит удержание тороидальной плазмы, является «запас устойчивости» q , равный rB j /RB q , где r и R – соответственно малый и большой радиусы тороидальной плазмы. При малом q может развиваться винтовая неустойчивость – аналог неустойчивости изгиба прямого пинча. Ученые в Москве экспериментально показали, что при q > 1 (т.е. B j B q ) возможность возникновения винтовой неустойчивости сильно уменьшается. Это позволяет эффективно использовать выделяемое током тепло для нагревания плазмы. В результате многолетних исследований характеристики токамаков существенно улучшились, в частности за счет повышения однородности поля и эффективной очистки вакуумной камеры.

Полученные в России обнадеживающие результаты стимулировали создание токамаков во многих лабораториях мира, а их конфигурация стала предметом интенсивного исследования.

Омический нагрев плазмы в токамаке недостаточен для осуществления реакции термоядерного синтеза. Это связано с тем, что при нагреве плазмы сильно уменьшается ее электрическое сопротивление, и в результате резко снижается выделение тепла при прохождении тока. Увеличивать ток в токамаке выше некоторого предела нельзя, поскольку плазменный шнур может потерять устойчивость и переброситься на стенки камеры. Поэтому для нагрева плазмы используют различные дополнительные методы. Наиболее эффективные из них – инжекция пучков нейтральных атомов с высокой энергией и микроволновое облучение. В первом случае ускоренные до энергий 50–200 кэВ ионы нейтрализуются (чтобы избежать «отражения» их назад магнитным полем при введении в камеру) и инжектируются в плазму. Здесь они снова ионизуются и в процессе столкновений отдают плазме свою энергию. Во втором случае используется микроволновое излучение, частота которого равна ионной циклотронной частоте (частота вращения ионов в магнитном поле). На этой частоте плотная плазма ведет себя как абсолютно черное тело, т.е. полностью поглощает падающую энергию. На токамаке

JET стран Европейского союза методом инжекции нейтральных частиц была получена плазма с ионной температурой 280 млн. кельвинов и временем удержания 0,85 с. На дейтериево-тритиевой плазме получена термоядерная мощность, достигающая 2 МВт. Длительность поддержания реакции ограничивается появлением примесей вследствие распыления стенок камеры: примеси проникают в плазму и, ионизуясь, существенно увеличивают энергетические потери за счет излучения. Сейчас работы по программе JET сосредоточены на исследованиях возможности контроля примесей и их удаления т.н. «магнитным дивертором».

Большие токамаки созданы также в США –

TFTR , в России – T15 и в Японии – JT60 . Исследования, выполненные на этих и других установках, заложили основу для дальнейшего этапа работ в области управляемого термоядерного синтеза: на 2010 намечается запуск большого реактора для технических испытаний. Предполагается, что это будет совместная работа США, России, стран Европейского союза и Японии. См. также ТОКАМАК. Пинч с обращенным полем (ПОП). Конфигурация ПОП отличается от токамака тем, что в ней B q ~ B j , но при этом направление тороидального поля вне плазмы противоположно его направлению внутри плазменного шнура. Дж.Тейлор показал, что такая система находится в состоянии с минимальной энергией и, несмотря на q , хорошо защищена от наиболее грубых крупноразмерных магнитогидродинамических неустойчивостей. От более мелких, локальных неустойчивостей ее в значительной мере защищает т.н. «магнитный шир» – изменение направления силовых линий суммарного магнитного поля при движении по радиусу шнура. Эксперименты на установке «Зета» в Англии показали, что в плазме может спонтанно возникать обращенная конфигурация поля, и когда это происходит, плазма сильнее нагревается и проявляет повышенную устойчивость.

Достоинством конфигурации ПОП является то, что в ней отношение объемных плотностей энергии плазмы и магнитного поля (величина

b ) больше, чем в токамаке. Принципиально важно, чтобы b было как можно больше, поскольку это позволит уменьшить тороидальное поле, а следовательно, снизит стоимость создающих его катушек и всей несущей конструкции. Слабая сторона ПОП состоит в том, что термоизоляция у этих систем хуже, чем у токамаков, и не решена проблема поддержания обращенного поля. Стелларатор. В стеллараторе на замкнутое тороидальное магнитное поле налагается поле, создаваемое специальной винтовой обмоткой, навитой на корпус камеры. Суммарное магнитное поле предотвращает дрейф плазмы в направлении от центра и подавляет отдельные виды магнитогидродинамических нестабильностей. Сама плазма может создаваться и нагреваться любым из способов, применяемых в токамаке.

Главным преимуществом стелларатора является то, что примененный в нем способ удержания не связан с наличием тока в плазме (как в токамаках или в установках на основе пинч-эффекта), и потому стелларатор может работать в стационарном режиме. Кроме того, винтовая обмотка может оказывать «диверторное» действие, т.е. очищать плазму от примесей и удалять продукты реакции.

Удержание плазмы в стеллараторах всесторонне исследуется на установках Европейского союза, России, Японии и США. На стеллараторе

« Вендельштейн VII» в Германии удалось поддерживать не несущую тока плазму с температурой более 5 Ч 10 6 кельвинов, нагревая ее путем инжекции высокоэнергетичного атомарного пучка.

Последние теоретические и экспериментальные исследования показали, что в большинстве описанных установок, и особенно в замкнутых тороидальных системах, время удержания плазмы можно увеличить, увеличивая ее радиальные размеры и удерживающее магнитное поле. Например, для токамака подсчитано, что критерий Лоусона будет выполняться (и даже с некоторым запасом) при напряженности магнитного поля

~ 50 ё 100 кГс и малом радиусе тороидальной камеры ок. 2 м. Таковы параметры установки на 1000 МВт электроэнергии.

При создании столь крупных установок с магнитным удержанием плазмы возникают совершенно новые технологические проблемы. Чтобы создать магнитное поле порядка 50 кГс в объеме нескольких кубических метров с помощью охлаждаемых водой медных катушек, потребуется источник электроэнергии мощностью в несколько сотен мегаватт. Поэтому очевидно, что обмотки катушек необходимо делать из сверхпроводящих материалов, таких, как сплавы ниобия с титаном или с оловом. Сопротивление этих материалов электрическому току в сверхпроводящем состоянии равно нулю, и, следовательно, на поддержание магнитного поля будет расходоваться минимальное количество электроэнергии.

Реакторная технология. Устройство термоядерной электростанции схематично показано на рис. 6. В камере реактора находится дейтерий-тритиевая плазма, а окружает ее литиево-бериллиевый «бланкет», где происходит поглощение нейтронов и воспроизводится тритий. Вырабатываемое тепло отводится из бланкета через теплообменник в обычную паровую турбину. Обмотки сверхпроводящего магнита защищены радиационными и тепловыми экранами и охлаждаются жидким гелием. Однако не решены еще многие проблемы, связанные с устойчивостью плазмы и очисткой ее от примесей, радиационным повреждением внутренней стенки камеры, подводом топлива, отводом теплоты и продуктов реакции, управлением тепловой мощностью. См. также АТОМНАЯ ЭНЕРГЕТИКА; ТЕПЛООБМЕННИК. Перспективы термоядерных исследований. Эксперименты, выполненные на установках типа токамак, показали, что эта система весьма перспективна в качестве возможной основы реактора УТС. На токамаках получены лучшие на сегодня результаты, и есть надежда, что при соответствующем увеличении масштабов установок на них удастся осуществить промышленный УТС. Однако токамак недостаточно экономичен. Для устранения этого недостатка необходимо, чтобы он работал не в импульсном, как сейчас, а в непрерывном режиме. Но физические аспекты этой проблемы пока еще мало исследованы. Необходимо также разработать технические средства, которые позволили бы улучшить параметры плазмы и устранить ее неустойчивости. Учитывая все это, не следует забывать и о других возможных, хотя и менее проработанных вариантах термоядерного реактора, например о стеллараторе или пинче с обращенным полем. Состояние исследований в этой области достигло этапа, когда имеются концептуальные реакторные проекты для большинства систем с магнитным удержанием высокотемпературной плазмы и для некоторых систем с инерциальным удержанием. Примером промышленной разработки токамака может служить проект « Ариес » (США).

Следующее поколение токамаков должно решить технические проблемы, связанные с промышленными реакторами УТС. Очевидно, что перед их создателями возникнут немалые трудности, но несомненно и то, что по мере осознания людьми проблем, касающихся окружающей среды, источников сырья и энергии, производство электроэнергии новыми рассмотренными выше способами займет подобающее ему место. См. также ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ.

ЛИТЕРАТУРА Арцимович Л.А. Управляемые термоядерные реакции . М., 1963
Тепловые и атомные электрические станции (кн. 1, разд. 6; кн. 3, разд. 8). М., 1989

Оптимизм - штука хорошая, но несамодостаточная. Например, по теории вероятности, на каждого смертного иногда должен падать кирпич. Поделать с этим решительно ничего нельзя: закон Вселенной. Выходит, единственное, что вообще может выгнать смертного на улицу в столь неспокойное время, - это вера в лучшее. А вот у работника сферы ЖКХ мотивация сложнее: его на улицу толкает как раз тот самый кирпич, который норовит на кого-то упасть. Ведь работник об этом кирпиче знает и может все исправить. Равновероятно может и не исправлять, но главное, что при любом решении голый оптимизм его уже не утешит.

В таком положении в XX веке оказалась целая отрасль - мировая энергетика. Люди, уполномоченные решать, решили, что уголь, нефть и природный газ будут, как солнце в песне, всегда, что кирпич сидит крепко и никуда не денется. Допустим, денется - так есть термоядерный синтез, пусть пока и не вполне управляемый. Логика такая: открыли его быстро, значит, так же быстро покорят. Но годы шли, отчества тиранов забывались, а термоядерный синтез не покорялся. Все только заигрывал, да требовал больше обходительности, чем имели смертные. Они-то, кстати, ничего не решали, были себе тихонечко оптимистами.

Повод заерзать на стуле появился, когда о конечности ископаемых топлив начали говорить публично. Причем, какая она, конечность, непонятно. Во-первых, точный объем еще не найденных нефти или, скажем, газа подсчитать довольно трудно. Во-вторых, прогноз осложняется колебаниями цен на рынке, от которых зависит скорость добычи. И, в-третьих, потребление разного горючего непостоянно во времени и пространстве: например, в 2015 году мировой спрос на уголь (это треть всех существующих энергоносителей) впервые упал с 2009 года, но к 2040 году, как ожидается, резко возрастет , особенно в Китае и на Ближнем Востоке.

Объем плазмы в JET составил уже около 100 кубических метров. За 30 лет он установил серию рекордов: решил первую проблему термоядерного синтеза, разогрев плазму до 150 миллионов градусов Цельсия; сгенерировал мощности в 1 мегаватт, а затем - в 16 мегаватт с показателем энергоэффективности Q ~ 0,7... Соотношение затраченной энергии к полученной - третья проблема термоядерного синтеза. Теоретически для самоподдерживающегося горения плазмы Q должен перевалить за единицу. Но практика показала, что мало и этого: на самом деле Q должен быть более 20. Среди токамаков Q JET пока остается непокоренным.

Новой надеждой отрасли стал токамак ITER , который прямо сейчас всем миром строят во Франции. Показатель Q у ITER должен достигнуть 10, мощность - 500 мегаватт, которые для начала просто рассеют в пространстве. Работы над этим проектом ведутся с 1985 года и должны были закончиться в 2016 году. Но постепенно стоимость стройки выросла с 5 до 19 миллиардов евро, и дата ввода в эксплуатацию отодвинулась на 9–11 лет. При этом ITER позиционируется как мостик к реактору DEMO , который, по плану в 2040-х годах, сгенерирует первое «термоядерное» электричество.

Биография «импульсных» систем была менее драматичной. Когда в начале 1970-х годов физики признали, что вариант с «постоянным» синтезом неидеален, то предложили вычеркнуть из уравнения удержание плазмы. Вместо этого изотопы должны были помещаться в миллиметровую пластиковую сферу, та - в золотую капсулу, охлажденную до абсолютного нуля, а капсула - в камеру. Затем капсула синхронно «обстреливалась» лазерами. Идея в том, что если нагреть и сдавить топливо достаточно быстро и равномерно, то реакция произойдет еще до рассеяния плазмы. И в 1974 году частная компания KMS Fusion такую реакцию получила .

Спустя несколько экспериментальных установок и лет выяснилось, что с «импульсным» синтезом не все так гладко. Равномерность сжатия оказалась проблемой: замороженные изотопы превращались не в идеальный шар, а в «гантелю», что резко снижало давление, а значит, и энергоэффективность. Ситуация привела к тому, что в 2012 году, через четыре года работы, от безысходности едва не закрылся крупнейший инерциальный американский реактор NIF . Но уже в 2013 году он сделал то, чего не удалось JET: первым в ядерной физике в 1,5 раза больше энергии, чем израсходовал.

Сейчас, помимо крупных, проблемы термоядерного синтеза решают «карманные», чисто экспериментальные, и «стартаперские» установки самых разных конструкций. Иногда и у них получается совершить чудо. Например, недавно физики из Рочестерского университета превзошли поставленный в 2013 году рекорд энергоэффективности в четыре , а затем и в пять раз. Правда, новые ограничения на температуру розжига и давления при этом никуда не делись, да и эксперименты проводились в реакторе, примерно втрое меньшем, чем NIF. А линейный размер, как мы знаем, имеет значение.

Зачем так напрягаться, недоумеваете вы? Чтобы было понятно, чем термоядерный синтез так привлекателен, сравним его с «обычным» горючим. Допустим, в каждый момент времени в «бублике» токамака находится один грамм изотопов. При столкновении одного дейтерия и одного трития выделяется 17,6 мегаэлектронвольта энергии, или 0,000 000 000 002 джоуля. Теперь статистика: сжигание одного грамма дров даст нам 7 тысяч джоулей, угля - 34 тысячи джоулей, газа или нефти - 44 тысячи джоулей. Сжигание же грамма изотопов должно привести к выбросу 170 миллиардов джоулей тепла. Столько весь мир потребляет примерно за 14 минут.

Нейтроны-беженцы и смертоносные ГЭС

Более того, термоядерный синтез почти безвреден. «Почти» - потому что нейтрон, который улетит и не вернется, забрав часть кинетической энергии, покинет магнитную ловушку, но далеко уйти не сможет. Скоро непоседа будет схвачен атомным ядром одного из листов бланкета - металлического «одеяла» реактора. Ядро, «поймавшее» нейтрон, при этом превратится либо в стабильный, то есть безопасный и относительно долговечный, либо в радиоактивный изотоп - как повезет. Облучение реактора нейтронами называется наведенной радиацией. Из-за нее бланкет придется менять где-то каждые 10–100 лет.

Самое время уточнить, что схема «сцепления» изотопов, описанная выше, была упрощенной. В отличие от дейтерия, который можно есть ложкой, легко создать и встретить в обычной морской воде, тритий - радиоизотоп, и искусственно синтезируется за неприличные деньги. При этом хранить его бессмысленно: ядро быстро «разваливается». В ITER тритий будут получать на месте, сталкивая нейтроны с литием-6 и отдельно добавляя готовый дейтерий. В результате нейтронов, которые попытаются «бежать» (вместе с тритием) и застрянут в бланкете, будет еще больше, чем могло показаться.

Несмотря на это, площадь радиоактивного воздействия термоядерного реактора будет пренебрежимо мала. Ирония в том, что безопасность предусмотрена самим несовершенством технологии. Поскольку плазму приходится удерживать, а «топливо» добавлять снова и снова, без надзора со стороны система проработает от силы несколько минут (плановое время удержания у ITER - 400 секунд) и погаснет. Но даже при одномоментном разрушении, по мнению физика Кристофера Ллуэллина-Смита, выселять города не придется: из-за низкой плотности плазмы трития в ней будет всего 0,7 грамма.

Разумеется, на дейтерии и тритии свет клином не сошелся. Для термоядерного синтеза ученые рассматривают и другие пары: дейтерий и дейтерий, гелий-3 и бор-11, дейтерий и гелий-3, водород и бор-11. В трех последних никаких «убегающих» нейтронов и вовсе не будет, а с парами водород - бор-11 и дейтерий - гелий-3 уже работают две американские компании. Просто пока, на нынешнем витке технологического невежества, сталкивать дейтерий и тритий чуть легче.

Да и простая арифметика на стороне новой отрасли. За последние 55 лет в мире произошло: пять прорывов ГЭС, в результате которых погибло столько, сколько на российских дорогах погибает за восемь лет; 26 аварий на атомных электростанциях, из-за которых погибло в десятки тысяч раз меньше людей, чем от прорывов ГЭС; и сотни происшествий на тепловых электросетях с бог весть какими последствиями. Зато за время работы термоядерных реакторов, кажется, ничто, кроме нервных клеток и бюджетов, пока не пострадало.

Холодный ядерный синтез

Каким бы крошечным он ни был, а шанс сорвать куш в «термоядерную» лотерею будоражил всех, не только физиков. В марте 1989 года два достаточно известных химика, американец Стэнли Понс и британец Мартин Флейшман, собрали журналистов, чтобы явить миру «холодный» ядерный синтез. Работал он так. В раствор с дейтерием и литием помещался палладиевый электрод и через него пропускали постоянный ток. Дейтерий и литий поглощались палладием и, сталкиваясь, иногда «сцеплялись» в тритий и гелий-4, вдруг резко нагревая раствор. И это при комнатной температуре и нормальном атмосферном давлении.

Перспектива получать энергию без головомойки с температурой, давлением и сложными установками была слишком заманчива, и на следующий день Флейшман и Понс проснулись знаменитыми. Власти штата Юта выделили на их исследования «холодного» синтеза 5 миллионов долларов, еще 25 миллионов долларов у Конгресса США запросил университет, в котором работал Понс. Ложку дегтя в историю добавляли два момента. Во-первых, подробности эксперимента появились в The Journal of Electroanalytical Chemistry and Interfacial Electrochemistry только в апреле, спустя месяц после пресс-конференции. Это противоречило научному этикету.

Во-вторых, у специалистов по ядерной физике к Флейшману и Понсу возникло много вопросов. Например, почему в их реакторе столкновение двух дейтронов дает тритий и гелий-4, когда должно давать тритий и протон или нейтрон и гелий-3? Причем проверить это было просто: при условии, что в палладиевом электроде происходил ядерный синтез, от изотопов «отлетали» бы нейтроны с заранее известной кинетической энергией. Но ни датчики нейтронов, ни воспроизведение эксперимента другими учеными к таким результатам не привели. И за недостатком данных уже в мае сенсация химиков была признана «уткой».

Несмотря на это, труд Понса и Флейшмана внес в ядерную физику и химию сумятицу. Ведь что произошло: некая реакция изотопов, палладия и электричества привела к выделению положительной энергии, точнее, к спонтанному нагреванию раствора. В 2008 году похожую установку журналистам показали японские ученые. Они помещали в колбу палладий и оксид циркония и под давлением накачивали в нее дейтерий. Из-за давления ядра «терлись» друг о друга и превращались в гелий, выделяя энергию. Как и в эксперименте Флейшмана-Понса, о «безнейтронной» реакции синтеза авторы судили только по температуре в колбе.

У физики объяснений не было. Но могли быть у химии: что если вещество изменяют катализаторы - «ускорители» реакций? Один такой «ускоритель» якобы использовал итальянский инженер Андреа Росси. В 2009 году он вместе с физиком Серджио Фокарди подал заявку на изобретение аппарата для «низкоэнергетической ядерной реакции». Это 20-сантиметровая керамическая трубка, в которую помещаются порошок никеля, неизвестный катализатор и под давлением накачивается водород. Трубка нагревается обычным электрокалорифером, частично превращая никель в медь с выделением нейтронов и положительной энергии.

До патента Росси и Фокарди механику «реактора» не разглашали из принципа. Потом - со ссылкой на коммерческую тайну. В 2011 году установку начали проверять журналисты и ученые (почему-то одни и те же). Проверки заключались в следующем. Трубку нагревали на несколько часов, измеряли входную и выходную мощность и изучали изотопный состав никеля. Вскрывать было нельзя. Слова разработчиков подтверждались: энергии выходит в 30 раз больше, состав никеля меняется . Но как? Для такой реакции нужно не 200 градусов, а все 20 миллиардов градусов Цельсия, поскольку ядро никеля тяжелее даже железа.

Андреа Росси во время испытаний аппарата для «низкоэнергетической ядерной реакции» (слева). / © Vessy"s Blog

Ни один научный журнал итальянских «волшебников» так и не опубликовал. Многие довольно быстро махнули на «низкоэнергетические реакции» рукой, хотя последователи у метода есть. Сейчас Росси судится с правообладателем патента, американской компанией Industrial Heat, по обвинению в краже интеллектуальной собственности. Та считает его мошенником, а проверки с экспертами - «липой».

И все же «холодный» ядерный синтез существует. Он действительно основан на «катализаторе», - мюонах. Мюоны (отрицательно заряженные) «выпинывают» электроны с атомной орбитали, образуя мезоатомы. Если столкнуть мезоатомы с, например, дейтерием, получатся положительно заряженные мезомолекулы. А так как мюон в 207 раз тяжелее электрона, ядра мезомолекул будут в 207 раз ближе друг к другу - того же эффекта можно добиться, если нагреть изотопы до 30 миллионов градусов Цельсия. Поэтому ядра мезоатомов «сцепляются» сами, без нагрева, а мюон «прыгает» на другие атомы, пока не «увязнет» в мезоатоме гелия.

К 2016 году мюон научили совершать примерно 100 таких «прыжков». Затем - либо мезоатом гелия, либо распад (время жизни мюона - всего 2,2 микросекунды). Овчинка не стоит выделки: количество полученной от 100 «прыжков» энергии не превышает 2 гигаэлектронвольт, а на создание одного мюона нужно 5–10 гигаэлектронвольт. Чтобы «холодный» синтез, точнее, «мюонный катализ», был выгодным, каждый мюон должен научиться 10 тысячам «прыжков» или, наконец, перестать требовать от смертных слишком много. В конце концов, до каменного века - с пионерскими кострами вместо ТЭЦ - осталось каких-то 250 лет.

Впрочем, в конечность ископаемых топлив верят не все . Менделеев, например, отрицал исчерпаемость нефти. Она, думал химик, - продукт абиотических реакций , а не разложившихся птеродактилей, поэтому самовосстанавливается. Слухи об обратном Менделеев вменял братьям Нобель, которые в конце XIX века замахнулись на нефтяную монополию. Вслед за ним советский физик Лев Арцимович и вовсе выражал убежденность в том, что термоядерная энергетика появится только тогда, когда будет «действительно» нужна человечеству. Выходит, Менделеев и Арцимович были хоть лицами и решающими, а все же - оптимистами.

И в термоядерной энергетике мы на самом деле пока не нуждаемся.

ЯДЕРНЫЙ СИНТЕЗ
термоядерный синтез, реакция слияния легких атомных ядер в более тяжелые ядра, происходящая при сверхвысокой температуре и сопровождающаяся выделением огромных количеств энергии. Ядерный синтез - это реакция, обратная делению атомов: в последней энергия выделяется за счет расщепления тяжелых ядер на более легкие. См. также
ЯДЕР ДЕЛЕНИЕ ;
АТОМНАЯ ЭНЕРГЕТИКА . Согласно современным астрофизическим представлениям, основным источником энергии Солнца и других звезд является происходящий в их недрах термоядерный синтез. В земных условиях он осуществляется при взрыве водородной бомбы. Термоядерный синтез сопровождается колоссальным энерговыделением на единицу массы реагирующих веществ (примерно в 10 миллионов раз большим, чем в химических реакциях). Поэтому представляет большой интерес овладеть этим процессом и на его основе создать дешевый и экологически чистый источник энергии. Однако несмотря на то, что исследованиями управляемого термоядерного синтеза (УТС) заняты большие научно-технические коллективы во многих развитых странах, предстоит решить еще немало сложных проблем, прежде чем промышленное производство термоядерной энергии станет реальностью. Современные атомные станции, использующие процесс деления, лишь отчасти удовлетворяют мировые потребности в электроэнергии. Топливом для них служат естественные радиоактивные элементы уран и торий, распространенность и запасы которых в природе весьма ограничены; поэтому для многих стран возникает проблема их импорта. Главным компонентом термоядерного топлива является изотоп водорода дейтерий, который содержится в морской воде. Запасы его общедоступны и очень велики (мировой океан покрывает ЯДЕРНЫЙ СИНТЕЗ71% площади поверхности Земли, а на долю дейтерия приходится ок. 0,016% общего числа атомов водорода, входящих в состав воды). Помимо доступности топлива, термоядерные источники энергии имеют следующие важные преимущества перед атомными станциями: 1) реактор УТС содержит гораздо меньше радиоактивных материалов, чем атомный реактор деления, и поэтому последствия случайного выброса радиоактивных продуктов менее опасны; 2) при термоядерных реакциях образуется меньше долгоживущих радиоактивных отходов; 3) УТС допускает прямое получение электроэнергии.
ФИЗИЧЕСКИЕ ОСНОВЫ ЯДЕРНОГО СИНТЕЗА
Успешное осуществление реакции синтеза зависит от свойств используемых атомных ядер и возможности получения плотной высокотемпературной плазмы, которая необходима для инициирования реакции.
Ядерные силы и реакции. Энерговыделение при ядерном синтезе обусловлено действующими внутри ядра чрезвычайно интенсивными силами притяжения; эти силы удерживают вместе входящие в состав ядра протоны и нейтроны. Они очень интенсивны на расстояниях ЯДЕРНЫЙ СИНТЕЗ10-13 см и чрезвычайно быстро ослабевают с увеличением расстояния. Помимо этих сил, положительно заряженные протоны создают электростатические силы отталкивания. Радиус действия электростатических сил гораздо больше, чем у ядерных, поэтому они начинают преобладать, когда ядра удалены друг от друга. В нормальных условиях кинетическая энергия ядер легких атомов слишком мала для того, чтобы, преодолев электростатическое отталкивание, они могли сблизиться и вступить в ядерную реакцию. Однако отталкивание можно преодолеть "грубой" силой, например сталкивая ядра, обладающие высокой относительной скоростью. Дж.Кокрофт и Э.Уолтон использовали этот принцип в своих экспериментах, проводившихся в 1932 в Кавендишской лаборатории (Кембридж, Великобритания). Облучая литиевую мишень ускоренными в электрическом поле протонами, они наблюдали взаимодействие протонов с ядрами лития Li. С тех пор изучено большое число подобных реакций. Реакции с участием наиболее легких ядер - протона (p), дейтрона (d) и тритона (t), соответствующих изотопам водорода протию 1H, дейтерию 2H и тритию 3H, - а также "легкого" изотопа гелия 3He и двух изотопов лития 6Li и 7Li представлены в приведенной ниже таблице. Здесь n - нейтрон, g - гамма-квант. Энергия, выделяющаяся в каждой реакции, дана в миллионах электрон-вольт (МэВ). При кинетической энергии 1 МэВ скорость протона составляет 14 500 км/с.
См. также АТОМНОГО ЯДРА СТРОЕНИЕ .

РЕАКЦИИ ТЕРМОЯДЕРНОГО СИНТЕЗА


Как показал Г.Гамов, вероятность реакции между двумя сближающимися легкими ядрами пропорциональна

, где e - основание натуральных логарифмов, Z1 и Z2 - числа протонов во взаимодействующих ядрах, W - энергия их относительного сближения, а K - постоянный множитель. Энергия, необходимая для осуществления реакции, зависит от числа протонов в каждом ядре. Если оно больше трех, то эта энергия слишком велика и реакция практически неосуществима. Таким образом, с возрастанием Z1 и Z2 вероятность реакции уменьшается. Вероятность того, что два ядра вступят во взаимодействие, характеризуется "сечением реакции", измеряемом в барнах (1 б = 10-24 см2). Сечение реакции - это площадь эффективного поперечного сечения ядра, в которое должно "попасть" другое ядро, чтобы произошло их взаимодействие. Сечение реакции дейтерия с тритием достигает максимальной величины (ЯДЕРНЫЙ СИНТЕЗ5 б), когда взаимодействующие частицы имеют энергию относительного сближения порядка 200 кэВ. При энергии 20 кэВ сечение становится меньше 0,1 б. Из миллиона попадающих на мишень ускоренных частиц не более одной вступает в ядерное взаимодействие. Остальные рассеивают свою энергию на электронах атомов мишени и замедляются до скоростей, при которых реакция становится невозможной. Следовательно, способ бомбардировки твердой мишени ускоренными ядрами (как это было в эксперименте Кокрофта - Уолтона) для УТС непригоден, так как получаемая при этом энергия намного меньше затраченной.


Термоядерные топлива. Реакции с участием p, играющие основную роль в процессах ядерного синтеза на Солнце и других гомогенных звездах, в земных условиях не представляют практического интереса, поскольку имеют слишком малое сечение. Для осуществления термоядерного синтеза на земле более подходящим видом топлива, как упоминалось выше, является дейтерий. Но наиболее вероятная реакция реализуется в равнокомпонентной смеси дейтерия и трития (DT-смесь). К сожалению, тритий радиоактивен и, ввиду короткого периода полураспада (T1/2 ЯДЕРНЫЙ СИНТЕЗ 12,3 года) в природе практически не встречается. Его получают искусственным путем в реакторах деления, а также как побочный продукт в реакциях с дейтерием. Однако отсутствие в природе трития не является препятствием для использования DT - реакции синтеза, т.к. тритий можно производить, облучая изотоп 6Li образующимися при синтезе нейтронами: n + 6Li (r) 4He + t. Если окружить термоядерную камеру слоем 6Li (в природном литии его содержится 7%), то можно осуществить полное воспроизводство расходуемого трития. И хотя на практике часть нейтронов неизбежно теряется, их потерю легко восполнить, вводя в оболочку такой элемент, как бериллий, ядро которого, при попадании в него одного быстрого нейтрона, испускает два.
Принцип действия термоядерного реактора. Реакция слияния легких ядер, цель которой - получение полезной энергии, называется управляемым термоядерным синтезом. Осуществляется он при температурах порядка сотен миллионов кельвинов. Такой процесс реализован пока только в лабораториях.
Временные и температурные условия. Получение полезной термоядерной энергии возможно лишь при выполнении двух условий. Во-первых, предназначенная для синтеза смесь должна быть нагрета до температуры, при которой кинетическая энергия ядер обеспечивает высокую вероятность их слияния при столкновении. Во-вторых, реагирующая смесь должна быть очень хорошо термоизолирована (т.е. высокая температура должна поддерживаться достаточно долго, чтобы произошло необходимое число реакций и выделившаяся за счет этого энергия превышала энергию, затраченную на нагрев топлива). В количественной форме это условие выражается следующим образом. Чтобы нагреть термоядерную смесь, одному кубическому сантиметру ее объема надо сообщить энергию P1 = knT, где k - численный коэффициент, n - плотность смеси (количество ядер в 1 см3), T - требуемая температура. Для поддержания реакции сообщенная термоядерной смеси энергия должна сохраняться в течение времени t. Чтобы реактор был энергетически выгоден, нужно, чтобы за это время в нем выделилось термоядерной энергии больше, чем было потрачено на нагрев. Выделившаяся энергия (также на 1 см3) выражается следующим образом:


где f(T) - коэффициент, зависящий от температуры смеси и ее состава, R - энергия, выделяющаяся в одном элементарном акте синтеза. Тогда условие энергетической рентабельности P2 > P1 примет вид


или

Последнее неравенство, известное под названием критерия Лоусона, представляет собой количественное выражение требований к совершенству термоизоляции. Правая часть - "число Лоусона" - зависит только от температуры и состава смеси, и чем оно больше, тем жестче требования к термоизоляции, т.е. тем труднее создать реактор. В области приемлемых температур число Лоусона для чистого дейтерия составляет 1016 с/см3, а для равнокомпонентной DT-смеси - 2Ч1014 с/см3. Таким образом, DT-смесь является более предпочтительным термоядерным топливом. В соответствии с критерием Лоусона, определяющим энергетически выгодную величину произведения плотности на время удержания, в термоядерном реакторе следует использовать по возможности большие n либо t. Поэтому исследования УТС разошлись по двум разным направлениям: в первом исследователи пытались с помощью магнитного поля в течение достаточно длительного времени удерживать относительно разреженную плазму; во втором - с помощью лазеров на короткое время создать плазму с очень высокой плотностью. Первому подходу было посвящено гораздо больше работ, чем второму.
Магнитное удержание плазмы. Во время реакции синтеза плотность горячего реагента должна оставаться на уровне, который обеспечивал бы достаточно высокий выход полезной энергии на единицу объема при давлении, которое в состоянии выдержать камера с плазмой. Например, для смеси дейтерий - тритий при температуре 108 К выход определяется выражением

Если принять P равным 100 Вт/см3 (что примерно соответствует энергии, выделяемой топливными элементами в ядерных реакторах деления), то плотность n должна составлять ок. 1015 ядер/см3, а соответствующее давление nT - примерно 3 МПа. Время удержания при этом, согласно критерию Лоусона, должно быть не менее 0,1 с. Для дейтерий-дейтериевой плазмы при температуре 109 К

В этом случае при P = 100 Вт/см3, n " 3Ч1015 ядер/см3 и давлении примерно 100 МПа требуемое время удержания составит более 1 с. Заметим, что указанные плотности составляют лишь 0,0001 от плотности атмосферного воздуха, так что камера реактора должна откачиваться до высокого вакуума. Приведенные выше оценки времени удержания, температуры и плотности являются типичными минимальными параметрами, необходимыми для работы термоядерного реактора, причем легче они достигаются в случае дейтерий-тритиевой смеси. Что касается термоядерных реакций, протекающих при взрыве водородной бомбы и в недрах звезд, то следует иметь в виду, что в силу совершенно иных условий в первом случае они протекают очень быстро, а во втором - крайне медленно по сравнению с процессами в термоядерном реакторе.
Плазма. При сильном нагреве газа его атомы частично или полностью теряют электроны, в результате чего образуются положительно заряженные частицы, называемые ионами, и свободные электроны. При температурах более миллиона градусов газ, состоящий из легких элементов, полностью ионизуется, т.е. каждый его атом утрачивает все свои электроны. Газ в ионизованном состоянии называется плазмой (термин введен И.Ленгмюром). Свойства плазмы существенно отличаются от свойств нейтрального газа. Поскольку в плазме присутствуют свободные электроны, плазма очень хорошо проводит электрический ток, причем ее проводимость пропорциональна T3/2. Плазму можно нагревать, пропуская через нее электрический ток. Проводимость водородной плазмы при 108 К такая же, как у меди при комнатной температуре. Очень велика и теплопроводность плазмы. Чтобы удержать плазму, например, при температуре 108 К, ее нужно надежно термоизолировать. В принципе изолировать плазму от стенок камеры можно, поместив ее в сильное магнитное поле. Это обеспечивается силами, которые возникают при взаимодействии токов с магнитным полем в плазме. Под действием магнитного поля ионы и электроны движутся по спиралям вдоль его силовых линий. Переход с одной силовой линии на другую возможен при столкновениях частиц и при наложении поперечного электрического поля. В отсутствие электрических полей высокотемпературная разреженная плазма, в которой столкновения происходят редко, будет лишь медленно диффундировать поперек магнитных силовых линий. Если силовые линии магнитного поля замкнуть, придав им форму петли, то частицы плазмы будут двигаться вдоль этих линий, удерживаясь в области петли. Кроме такой замкнутой магнитной конфигурации для удержания плазмы были предложены и открытые системы (с силовыми линиями поля, выходящими из торцов камеры наружу), в которых частицы остаются внутри камеры благодаря ограничивающим движение частиц магнитным "пробкам". Магнитные пробки создаются у торцов камеры, где в результате постепенного увеличения напряженности поля образуется сужающийся пучок силовых линий. На практике осуществить магнитное удержание плазмы достаточно большой плотности оказалось далеко не просто: в ней часто возникают магнитогидродинамические и кинетические неустойчивости. Магнитогидродинамические неустойчивости связаны с изгибами и изломами магнитных силовых линий. В этом случае плазма может начать перемещаться поперек магнитного поля в виде сгустков, за несколько миллионных долей секунды уйдет из зоны удержания и отдаст тепло стенкам камеры. Такие неустойчивости можно подавить, придав магнитному полю определенную конфигурацию. Кинетические неустойчивости очень многообразны и изучены они менее детально. Среди них есть такие, которые срывают упорядоченные процессы, как, например, протекание через плазму постоянного электрического тока или потока частиц. Другие кинетические неустойчивости вызывают более высокую скорость поперечной диффузии плазмы в магнитном поле, чем предсказываемая теорией столкновений для спокойной плазмы.
Системы с замкнутой магнитной конфигурацией. Если к ионизованному проводящему газу приложить сильное электрическое поле, то в нем возникнет разрядный ток, одновременно с которым появится окружающее его магнитное поле. Взаимодействие магнитного поля с током приведет к появлению действующих на заряженные частицы газа сжимающих сил. Если ток протекает вдоль оси проводящего плазменного шнура, то возникающие радиальные силы подобно резиновым жгутам сжимают шнур, отодвигая границу плазмы от стенок содержащей ее камеры. Это явление, теоретически предсказанное У.Беннеттом в 1934 и впервые экспериментально продемонстрированное А.Уэром в 1951, названо пинч-эффектом. Метод пинча применяется для удержания плазмы; примечательной его особенностью является то, что газ нагревается до высоких температур самим электрическим током (омический нагрев). Принципиальная простота метода обусловила его использование в первых же попытках удержания горячей плазмы, а изучение простого пинч-эффекта, несмотря на то, что впоследствии он был вытеснен более совершенными методами, позволило лучше понять проблемы, с которыми экспериментаторы сталкиваются и сегодня. Помимо диффузии плазмы в радиальном направлении, наблюдается еще продольный дрейф и выход ее через торцы плазменного шнура. Потери через торцы можно устранить, если придать камере с плазмой форму бублика (тора). В этом случае получается тороидальный пинч. Для описанного выше простого пинча серьезной проблемой являются присущие ему магнитогидродинамические неустойчивости. Если у плазменного шнура возникает небольшой изгиб, то плотность силовых линий магнитного поля с внутренней стороны изгиба увеличивается (рис. 1). Магнитные силовые линии, которые ведут себя подобно сопротивляющимся сжатию жгутам, начнут быстро "выпучиваться", так что изгиб будет увеличиваться вплоть до разрушения всей структуры плазменного шнура. В результате плазма вступит в контакт со стенками камеры и охладится. Чтобы исключить это губительное явление, до пропускания основного аксиального тока в камере создают продольное магнитное поле, которое вместе с приложенным позднее круговым полем "выпрямляет" зарождающийся изгиб плазменного шнура (рис. 2). Принцип стабилизации плазменного шнура аксиальным полем положен в основу двух перспективных проектов термоядерных реакторов - токамака и пинча с обращенным магнитным полем.





Открытые магнитные конфигурации. В системах открытой конфигурации проблема удержания плазмы в продольном направлении решается путем создания магнитного поля, силовые линии которого вблизи торцов камеры имеют вид сужающегося пучка. Заряженные частицы движутся по винтовым линиям вдоль силовой линии поля и отражаются от областей с более высокой напряженностью (где плотность силовых линий больше). Такие конфигурации (рис. 3) называются ловушками с магнитными пробками, или магнитными зеркалами. Магнитное поле создается двумя параллельными катушками, в которых протекают сильные одинаково направленные токи. В пространстве между катушками силовые линии образуют "бочку", в которой и располагается удерживаемая плазма. Однако экспериментально установлено, что такие системы вряд ли в состоянии удержать плазму той степени плотности, которая необходима для работы реактора. Сейчас на этот метод удержания не возлагается больших надежд.
См. также МАГНИТНАЯ ГИДРОДИНАМИКА .



Инерциальное удержание. Теоретические расчеты показывают, что термоядерный синтез возможен и без применения магнитных ловушек. Для этого осуществляется быстрое сжатие специально приготовленной мишени (шарика из дейтерия радиусом ок. 1 мм) до столь высоких плотностей, что термоядерная реакция успевает завершиться прежде, чем произойдет испарение топливной мишени. Сжатие и нагрев до термоядерных температур можно производить сверхмощными лазерными импульсами, со всех сторон равномерно и одновременно облучающими топливный шарик (рис. 4). При мгновенном испарении его поверхностных слоев вылетающие частицы приобретают очень высокие скорости, и шарик оказывается под действием больших сжимающих сил. Они аналогичны движущим ракету реактивным силам, с той лишь разницей, что здесь эти силы направлены внутрь, к центру мишени. Этим методом можно создать давления порядка 1011 МПа и плотности, в 10 000 раз превышающие плотность воды. При такой плотности почти вся термоядерная энергия высвободится в виде небольшого взрыва за время ЯДЕРНЫЙ СИНТЕЗ10-12 с. Происходящие микровзрывы, каждый из которых эквивалентен 1-2 кг тротила, не вызовут повреждения реактора, а осуществление последовательности таких микровзрывов через короткие промежутки времени позволило бы реализовать практически непрерывное получение полезной энергии. Для инерциального удержания очень важно устройство топливной мишени. Мишень в виде концентрических сфер из тяжелого и легкого материалов позволит добиться максимально эффективного испарения частиц и, следовательно, наибольшего сжатия.



Расчеты показывают, что при энергии лазерного излучения порядка мегаджоуля (106 Дж) и кпд лазера не менее 10% производимая термоядерная энергия должна превышать энергию, израсходованную на накачку лазера. Термоядерные лазерные установки имеются в исследовательских лабораториях России, США, Западной Европы и Японии. В настоящее время изучается возможность использования вместо лазерного луча пучка тяжелых ионов или сочетания такого пучка со световым лучом. Благодаря современной технике такой способ инициирования реакции имеет преимущество перед лазерным, поскольку позволяет получить больше полезной энергии. Недостаток заключается в трудности фокусировки пучка на мишени.
УСТАНОВКИ С МАГНИТНЫМ УДЕРЖАНИЕМ
Магнитные методы удержания плазмы исследуются в России, США, Японии и ряде европейских стран. Главное внимание уделяется установкам тороидального типа, таким, как токамак и пинч с обращенным магнитным полем, появившимся в результате развития более простых пинчей со стабилизирующим продольным магнитным полем. Для удержания плазмы при помощи тороидального магнитного поля Bj необходимо создать условия, при которых плазма не смещалась бы к стенкам тора. Это достигается "скручиванием" силовых линий магнитного поля (т.н. "вращательным преобразованием"). Такое скручивание осуществляется двумя способами. В первом способе через плазму пропускается ток, приводящий к конфигурации уже рассмотренного устойчивого пинча. Магнитное поле тока Bq Ј -Bq вместе с Bj создает суммарное поле с необходимым закручиванием. Если Bj Bq, то получается конфигурация, известная под названием токамак (аббревиатура выражения "ТОроидальная КАмера с МАгнитными Катушками"). Токамак (рис. 5) был разработан под руководством Л. А. Арцимовича в Институте атомной энергии им. И. В. Курчатова в Москве. При Bj ЯДЕРНЫЙ СИНТЕЗ Bq получается конфигурация пинча с обращенным магнитным полем.



Во втором способе для обеспечения равновесия удерживаемой плазмы применяются специальные винтовые обмотки вокруг тороидальной плазменной камеры. Токи в этих обмотках создают сложное магнитное поле, приводящее к закручиванию силовых линий суммарного поля внутри тора. Такая установка, называемая стелларатором, была разработана в Принстонском университете (США) Л.Спитцером с сотрудниками.
Токамак. Важным параметром, от которого зависит удержание тороидальной плазмы, является "запас устойчивости" q, равный rBj/RBq, где r и R - соответственно малый и большой радиусы тороидальной плазмы. При малом q может развиваться винтовая неустойчивость - аналог неустойчивости изгиба прямого пинча. Ученые в Москве экспериментально показали, что при q > 1 (т.е. Bj Bq) возможность возникновения винтовой неустойчивости сильно уменьшается. Это позволяет эффективно использовать выделяемое током тепло для нагревания плазмы. В результате многолетних исследований характеристики токамаков существенно улучшились, в частности за счет повышения однородности поля и эффективной очистки вакуумной камеры. Полученные в России обнадеживающие результаты стимулировали создание токамаков во многих лабораториях мира, а их конфигурация стала предметом интенсивного исследования. Омический нагрев плазмы в токамаке недостаточен для осуществления реакции термоядерного синтеза. Это связано с тем, что при нагреве плазмы сильно уменьшается ее электрическое сопротивление, и в результате резко снижается выделение тепла при прохождении тока. Увеличивать ток в токамаке выше некоторого предела нельзя, поскольку плазменный шнур может потерять устойчивость и переброситься на стенки камеры. Поэтому для нагрева плазмы используют различные дополнительные методы. Наиболее эффективные из них - инжекция пучков нейтральных атомов с высокой энергией и микроволновое облучение. В первом случае ускоренные до энергий 50-200 кэВ ионы нейтрализуются (чтобы избежать "отражения" их назад магнитным полем при введении в камеру) и инжектируются в плазму. Здесь они снова ионизуются и в процессе столкновений отдают плазме свою энергию. Во втором случае используется микроволновое излучение, частота которого равна ионной циклотронной частоте (частота вращения ионов в магнитном поле). На этой частоте плотная плазма ведет себя как абсолютно черное тело, т.е. полностью поглощает падающую энергию. На токамаке JET стран Европейского союза методом инжекции нейтральных частиц была получена плазма с ионной температурой 280 млн. кельвинов и временем удержания 0,85 с. На дейтериево-тритиевой плазме получена термоядерная мощность, достигающая 2 МВт. Длительность поддержания реакции ограничивается появлением примесей вследствие распыления стенок камеры: примеси проникают в плазму и, ионизуясь, существенно увеличивают энергетические потери за счет излучения. Сейчас работы по программе JET сосредоточены на исследованиях возможности контроля примесей и их удаления т.н. "магнитным дивертором". Большие токамаки созданы также в США - TFTR, в России - T15 и в Японии - JT60. Исследования, выполненные на этих и других установках, заложили основу для дальнейшего этапа работ в области управляемого термоядерного синтеза: на 2010 намечается запуск большого реактора для технических испытаний. Предполагается, что это будет совместная работа США, России, стран Европейского союза и Японии.
Пинч с обращенным полем (ПОП). Конфигурация ПОП отличается от токамака тем, что в ней Bq ЯДЕРНЫЙ СИНТЕЗ Bj, но при этом направление тороидального поля вне плазмы противоположно его направлению внутри плазменного шнура. Дж.Тейлор показал, что такая система находится в состоянии с минимальной энергией и, несмотря на q Стелларатор. В стеллараторе на замкнутое тороидальное магнитное поле налагается поле, создаваемое специальной винтовой обмоткой, навитой на корпус камеры. Суммарное магнитное поле предотвращает дрейф плазмы в направлении от центра и подавляет отдельные виды магнитогидродинамических нестабильностей. Сама плазма может создаваться и нагреваться любым из способов, применяемых в токамаке. Главным преимуществом стелларатора является то, что примененный в нем способ удержания не связан с наличием тока в плазме (как в токамаках или в установках на основе пинч-эффекта), и потому стелларатор может работать в стационарном режиме. Кроме того, винтовая обмотка может оказывать "диверторное" действие, т.е. очищать плазму от примесей и удалять продукты реакции. Удержание плазмы в стеллараторах всесторонне исследуется на установках Европейского союза, России, Японии и США. На стеллараторе "Вендельштейн VII" в Германии удалось поддерживать не несущую тока плазму с температурой более 5Ч106 кельвинов, нагревая ее путем инжекции высокоэнергетичного атомарного пучка. Последние теоретические и экспериментальные исследования показали, что в большинстве описанных установок, и особенно в замкнутых тороидальных системах, время удержания плазмы можно увеличить, увеличивая ее радиальные размеры и удерживающее магнитное поле. Например, для токамака подсчитано, что критерий Лоусона будет выполняться (и даже с некоторым запасом) при напряженности магнитного поля ЯДЕРНЫЙ СИНТЕЗ50 е 100 кГс и малом радиусе тороидальной камеры ок. 2 м. Таковы параметры установки на 1000 МВт электроэнергии. При создании столь крупных установок с магнитным удержанием плазмы возникают совершенно новые технологические проблемы. Чтобы создать магнитное поле порядка 50 кГс в объеме нескольких кубических метров с помощью охлаждаемых водой медных катушек, потребуется источник электроэнергии мощностью в несколько сотен мегаватт. Поэтому очевидно, что обмотки катушек необходимо делать из сверхпроводящих материалов, таких, как сплавы ниобия с титаном или с оловом. Сопротивление этих материалов электрическому току в сверхпроводящем состоянии равно нулю, и, следовательно, на поддержание магнитного поля будет расходоваться минимальное количество электроэнергии.
Реакторная технология. Устройство термоядерной электростанции схематично показано на рис. 6. В камере реактора находится дейтерий-тритиевая плазма, а окружает ее литиево-бериллиевый "бланкет", где происходит поглощение нейтронов и воспроизводится тритий. Вырабатываемое тепло отводится из бланкета через теплообменник в обычную паровую турбину. Обмотки сверхпроводящего магнита защищены радиационными и тепловыми экранами и охлаждаются жидким гелием. Однако не решены еще многие проблемы, связанные с устойчивостью плазмы и очисткой ее от примесей, радиационным повреждением внутренней стенки камеры, подводом топлива, отводом теплоты и продуктов реакции, управлением тепловой мощностью.
См. также
АТОМНАЯ ЭНЕРГЕТИКА ;
ТЕПЛООБМЕННИК .



Перспективы термоядерных исследований. Эксперименты, выполненные на установках типа токамак, показали, что эта система весьма перспективна в качестве возможной основы реактора УТС. На токамаках получены лучшие на сегодня результаты, и есть надежда, что при соответствующем увеличении масштабов установок на них удастся осуществить промышленный УТС. Однако токамак недостаточно экономичен. Для устранения этого недостатка необходимо, чтобы он работал не в импульсном, как сейчас, а в непрерывном режиме. Но физические аспекты этой проблемы пока еще мало исследованы. Необходимо также разработать технические средства, которые позволили бы улучшить параметры плазмы и устранить ее неустойчивости. Учитывая все это, не следует забывать и о других возможных, хотя и менее проработанных вариантах термоядерного реактора, например о стеллараторе или пинче с обращенным полем. Состояние исследований в этой области достигло этапа, когда имеются концептуальные реакторные проекты для большинства систем с магнитным удержанием высокотемпературной плазмы и для некоторых систем с инерциальным удержанием. Примером промышленной разработки токамака может служить проект "Ариес" (США). Следующее поколение токамаков должно решить технические проблемы, связанные с промышленными реакторами УТС. Очевидно, что перед их создателями возникнут немалые трудности, но несомненно и то, что по мере осознания людьми проблем, касающихся окружающей среды, источников сырья и энергии, производство электроэнергии новыми рассмотренными выше способами займет подобающее ему место. См. также

Так как между атомными ядрами на малых расстояниях действуют ядерные силы притяжения, при сближении двух ядер возможно их слияние, т. е. синтез более тяжелого ядра. Все атомные ядра имеют положительный электрический заряд и, следовательно, на больших расстояниях отталкиваются друг от друга. Для того чтобы ядра могли сблизиться и вступить в ядерную реакцию синтеза, они должны обладать достаточной кинетической энергией для преодоления взаимного электрического отталкивания, которое тем больше, чем больше заряд ядра. Поэтому проще всего осуществляется синтез легких ядер с малым электрическим зарядом. В лаборатории реакции синтеза можно наблюдать, обстреливая мишень быстрыми ядрами, разогнанными в специальном ускорителе (см. Ускорители заряженных частиц). В природе реакции синтеза происходят в очень горячем веществе, например в недрах звезд, в том числе в центре Солнца, где температура 14 млн градусов и энергия теплового движения некоторых самых быстрых частиц достаточна для преодоления электрического отталкивания. Ядерный синтез, происходящий в разогретом веществе, называют термоядерным.

Термоядерные реакции, идущие в недрах звезд, играют очень важную роль в эволюции Вселенной. Они - источник ядер химических элементов, которые синтезируются из водорода в звездах. Они - источник энергии звезд. Основным источником энергии Солнца являются реакции так называемого протон-протонного цикла, в результате которых из 4 протонов рождается ядро гелия. Выделяющаяся при синтезе энергия уносится образующимися ядрами, квантами электромагнитного излучения, нейтронами и нейтрино. Наблюдая поток нейтрино, идущий от Солнца, можно установить, какие ядерные реакции синтеза и с какой интенсивностью происходят в его центре.

Уникальная особенность термоядерных реакций как источника энергии - очень большое энерговыделение на единицу массы реагирующих веществ - в 10 млн раз больше, чем в химических реакциях. Вступление в синтез 1 г изотопов водорода эквивалентно сгоранию 10 т бензина. Поэтому ученые давно стремятся овладеть этим гигантским источником энергии. В принципе мы умеем уже сегодня получать на Земле энергию термоядерного синтеза. Нагреть вещество до звездных температур можно, используя энергию атомного взрыва. Так устроена водородная бомба - самое страшное оружие современности, в которой взрыв ядерного запала приводит к мгновенному нагреву смеси дейтерия с тритием и последующему термоядерному взрыву.

Но не к такому неуправляемому синтезу, способному погубить все живое на Земле, стремятся ученые. Они ищут способы осуществления управляемого термоядерного синтеза. Какие же условия должны быть для этого выполнены? Прежде всего, конечно, нужно нагреть термоядерное горючее до температуры, когда реакции синтеза могут происходить с заметной вероятностью. Но этого мало. Необходимо, чтобы при синтезе выделялось больше энергии, чем затрачивается на нагрев вещества, или, что еще лучше, чтобы рождающиеся при синтезе быстрые частицы сами поддерживали требуемую температуру горючего. Для этого нужно, чтобы вступающее в синтез вещество было надежно теплоизолировано от окружающей и, естественно, холодной на Земле среды, т. е. чтобы время остывания, или, как говорят, время удержания энергии, было достаточно велико.

Требования к температуре и времени удержания зависят от используемого горючего. Легче всего осуществить синтез между тяжелыми изотопами водорода - дейтерием (Д) и тритием (Т). При этом в результате реакции получается ядро гелия (He 4) и нейтрон. Дейтерий имеется на Земле в огромных количествах в морской воде (один атом дейтерия на 6000 атомов водорода). Тритий же в природе отсутствует. Сегодня его получают искусственно, облучая в ядерных реакторах нейтронами литий. Отсутствие трития не является, однако, препятствием для использования Д-Т реакции синтеза, так как образующийся при реакции нейтрон можно использовать для воспроизводства трития, облучая литий, запасы которого на Земле достаточно велики.

Для осуществления Д-Т реакции наиболее выгодны температуры около 100 млн градусов. Требование же ко времени удержания энергии зависит от плотности реагирующего вещества, которое при такой температуре неизбежно будет находиться в виде плазмы, т. е. ионизированного газа. Так как интенсивность термоядерных реакций тем выше, чем выше плотность плазмы, требования ко времени удержания энергии обратно пропорциональны плотности. Если выражать плотность в виде числа ионов в 1 см 3 , то для Д-Т реакции при оптимальной температуре условие получения полезной энергии можно записать в виде: произведение плотности n на время удержания энергии τ должно быть больше 10 14 см −3 с, т. е. плазма с плотностью 10 14 ионов в 1 см 3 должна заметно остывать не быстрее, чем за 1 с.

Так как тепловая скорость ионов водорода при требуемой температуре 10 8 см/с, за 1 с ионы пролетают 1000 км. Поэтому нужны специальные устройства, предотвращающие попадание плазмы на стенки, теплоизолирующие её. Плазма - газ, состоящий из смеси ионов и электронов. На заряженные частицы, движущиеся поперек магнитного поля, действует сила, искривляющая их траекторию и заставляющая двигаться по окружностям с радиусами, пропорциональными импульсу частиц и обратно пропорциональными магнитному полю. Таким образом, магнитное поле может предотвратить уход заряженных частиц в направлении, перпендикулярном силовым линиям. На этом основана идея магнитной термоизоляции плазмы. Магнитное поле, однако, не препятствует движению частиц вдоль силовых линий: в общем случае частицы движутся по спиралям, навиваясь на силовые линии.

Физики придумали разные хитрости, предотвращающие уход частиц вдоль силовых линий. Можно, например, сделать «магнитные пробки» - области с более сильным магнитным полем, отражающие часть частиц, но лучше всего свернуть силовые линии в кольцо, использовать тороидальное магнитное поле. Но и одного тороидального поля, оказывается, недостаточно.

Тороидальное поле неоднородно в пространстве - его напряженность спадает по радиусу, а в неоднородном поле возникает медленное движение заряженных частиц - так называемый дрейф - поперек магнитного поля. Ликвидировать этот дрейф можно, пропустив через плазму ток вдоль обхода тора. Магнитное поле тока, складываясь с тороидальным внешним полем, сделает общее поле винтовым.

Двигаясь по спиралям вдоль силовых линий, заряженные частицы будут переходить из верхней полуплоскости тора в нижнюю и обратно. При этом они будут все время дрейфовать в одну сторону, например вверх. Но, находясь в верхней полуплоскости и дрейфуя вверх, частицы уходят от средней плоскости тора, а находясь в нижней полуплоскости и дрейфуя тоже вверх, частицы возвращаются к ней. Так дрейфы в верхней и нижней половинах тора взаимно компенсируются и не приводят к потерям частиц. Именно так и устроена магнитная система установок типа Токамак, на которых получены наилучшие результаты по нагреву и термоизоляции плазмы.

Кроме термоизоляции плазмы необходимо обеспечить также её нагрев. В Токамаке для этой цели можно использовать ток, протекающий по плазменному шнуру. В других устройствах, где удержание осуществляется без тока, а также и в самом Токамаке для нагрева до очень высоких температур используют и иные способы нагрева, например с помощью высокочастотных электромагнитных волн, инжекции (введения) в плазму пучков быстрых частиц, световых пучков, генерируемых мощными лазерами, и т. д. Чем больше мощность нагревающего устройства, тем быстрее можно нагреть плазму до требуемой температуры. Разработка в последние годы очень мощных лазеров и источников пучков релятивистских заряженных частиц позволила нагревать малые объемы вещества до термоядерных температур за очень малое время, столь малое, что вещество успевает нагреться и вступить в реакции синтеза раньше, чем разлететься из‑за теплового движения. В таких условиях дополнительная термоизоляция оказалась ненужной. Единственное, что удерживает частицы от разлета,- это их собственная инерция. Термоядерные устройства, основанные на этом принципе, называют устройствами с инерционным удержанием. Это новое направление исследований, которое называется инерционным термоядерным синтезом, усиленно развивается в настоящее время.

Все звёзды, и наше Солнце в том числе, производят энергию с помощью термоядерного синтеза. Научный мир находится в затруднении. Ученые знают не все способы, которыми можно получить подобный синтез (термоядерный). Слияние лёгких атомных ядер и превращение их в более тяжёлые говорит о том, что получилась энергия, которая может носить либо управляемый характер, либо взрывной. Последний используется в термоядерных взрывных конструкциях. Управляемый же термоядерный процесс имеет отличие от остальной ядерной энергетики тем, что она использует реакцию распада, когда тяжёлые ядра расщепляются на более лёгкие, а вот ядерные реакции с применением дейтерия (2 Н) и трития (3 Н) - слияние, то есть именно управляемый синтез термоядерный. В будущем планируется применение гелия-3 (3 Не) и бора-11 (11 В).

Мечта

Нельзя путать традиционный и всем известный синтез термоядерный с тем, что представляет собой мечта сегодняшних физиков, в воплощение которой пока не верит никто. Имеется в виду ядерная реакция при любой, даже комнатной температуре. Также это отсутствие радиации и холодный термоядерный синтез. Энциклопедии говорят нам, что ядерная реакция синтеза в атомно-молекулярных (химических) системах - это процесс, где не требуется значительного нагрева вещества, но подобную энергию человечество пока не добывает. Это при том, что абсолютно все ядерные реакции, при которых происходит синтез, находятся в состоянии плазмы, а температура её составляет миллионы градусов.

На данный момент это мечта даже не физиков, а фантастов, но тем не менее разработки ведутся давно и упорно. Синтез термоядерный без постоянно сопутствующей опасности уровня Чернобыля и Фукусимы - это ли не великая цель для блага человечества? Зарубежная научная литература дала разные названия этому явлению. Например, LENR - обозначение низкоэнергетических ядерных реакций (low-energy nuclear reactions), и CANR - химически индуцируемых (ассистируемых) ядерных реакций. Удачные осуществления подобных экспериментов декларировались достаточно часто, представляя обширнейшие базы данных. Но либо СМИ выдавали очередную "утку", либо результаты говорили о некорректно поставленных опытах. Холодный термоядерный синтез не снискал пока по-настоящему убедительных доказательств своего существования.

Звёздный элемент

Самым распространённым элементом в космосе является водород. Примерно половина массы Солнца и большей части остальных звёзд приходится на его долю. Водород есть не только в их составе - его много и в межзвёздном газе, и в газовых туманностях. А в недрах звёзд, в том числе и Солнца, созданы условия термоядерного синтеза: там превращаются ядра атомов водорода в атомы гелия, посредством чего образуется огромная энергия. Водород - главный её источник. Ежесекундно наше Солнце излучает в пространство космоса энергию, эквивалентную четырем миллионам тонн вещества.

Вот что даёт слияние в одно ядро гелия четырёх ядер водорода. Когда сгорает один грамм протонов, энергия термоядерного синтеза выделяется в двадцать миллионов раз больше, чем при сгорании такого же количества каменного угля. В земных условиях сила термоядерного синтеза невозможна, поскольку пока не освоены человеком такие температуры и давления, какие существуют в недрах звёзд. Расчёты показывают: как минимум ещё тридцать миллиардов лет наше Солнце не угаснет и не ослабнет за счёт присутствия водорода. А на Земле люди только начинают понимать, что такое водородная энергетика и какова реакция термоядерного синтеза, поскольку работа с этим газом весьма рискованная, а хранить его чрезвычайно трудно. Пока что человечество умеет только расщеплять атом. И на этом принципе построен каждый реактор (ядерный).

Термоядерный синтез

Ядерная энергия - продукт расщепления атомов. Синтез же получает энергию другим путём - методом соединения их друг с другом, когда не образуются смертоносные радиоактивные отходы, а небольшого количества морской воды хватило бы на производство такого же количества энергии, сколько получается от сжигания двух тонн угля. В лабораториях мира уже было доказано, что вполне возможен управляемый термоядерный синтез. Однако электростанции, которые использовали бы эту энергию, пока не возведены, даже строительство их не предвидится. Но двести пятьдесят миллионов долларов были потрачены только Соединёнными Штатами, чтобы исследовать такое явление, как управляемый термоядерный синтез.

Затем эти исследования были буквально дискредитированы. В 1989 году химики С. Понс (США) и М. Флешман (Великобритания) заявили на весь мир, что им удалось достичь положительного результата и запустить термоядерный синтез. Проблемы заключались в том, что учёные слишком поторопились, не подвергнув своё открытие рецензированию со стороны научного мира. СМИ мгновенно схватили сенсацию и подали это заявление как открытие века. Проверка была проведена позже, и обнаружились не просто ошибки в проведении эксперимента - это был провал. И разочарованию тогда поддались не только журналисты, но и многие весьма уважаемые физики мировой величины. Солидные лаборатории Принстонского университета потратили на проверку эксперимента более пятидесяти миллионов долларов. Таким образом, холодный термоядерный синтез, принцип его получения были объявлены лженаукой. Лишь маленькие и разобщённые группы энтузиастов продолжили эти исследования.

Суть

Теперь термин предлагают заменить, и вместо холодного ядерного синтеза будет звучать следующее определение: ядерный процесс, индуцированный кристаллической решёткой. Под этим явлением понимают аномальные низкотемпературные процессы, с точки зрения ядерных столкновений в вакууме просто невозможные - выделение нейтронов посредством слияния ядер. Эти процессы могут существовать в неравновесных твёрдых телах, стимулирующихся трансформациями упругой энергии в кристаллической решётке при механических воздействиях, фазовых переходах, сорбции или десорбции дейтерия (водорода). Это аналог уже известной горячей термоядерной реакции, когда сливаются ядра водорода и превращаются в ядра гелия, выделяя колоссальную энергию, но происходит это при комнатной температуре.

Холодный термоядерный синтез точнее определяется как фотоядерные реакции, химически индуцированные. Прямого холодного термоядерного синтеза так и не удалось достичь, но поисками были подсказаны совершенно другие стратегии. Термоядерная реакция запускается генерацией нейтронов. Механическое стимулирование химическими реакциями приводит к возбуждению глубоких электронных оболочек, рождая гамма- или рентгеновское излучение, которое перехватывается ядрами. То есть происходит фотоядерная реакция. Ядра распадаются, и генерируют таким образом нейтроны и, вполне возможно, гамма-кванты. Что же может возбудить внутренние электроны? Вероятно, ударная волна. От взрыва обычной взрывчатки.

Реактор

Более сорока лет мировое термоядерное лобби тратит около миллиона долларов ежегодно на исследования термоядерного синтеза, который предполагается получить с помощью ТОКАМАКа. Однако практически все прогрессивные учёные против таких исследований, поскольку положительный результат, скорее всего, невозможен. Западная Европа и США разочарованно приступили к демонтажу всех своих ТОКАМАКов. И только в России ещё верят в чудо. Хотя многие учёные считают эту идею идеальным тормозом альтернативы ядерному синтезу. Что же такое ТОКАМАК? Это один из двух проектов термоядерного реактора, представляющий собой тороидальную камеру с магнитными катушками. А ещё существует стелларатор, в котором плазма удерживается в магнитном поле, но катушки, наводящие магнитное поле, - внешние, в отличие от ТОКАМАКа.

Это очень непростая конструкция. ТОКАМАК по сложности вполне достоен Большого адронного коллайдера: более десяти миллионов элементов, а общие затраты вместе со строительством и стоимостью проектов значительно превышают двадцать миллиардов евро. Коллайдер намного дешевле обошёлся, а поддержка работоспособности МКС также стоит не дороже. Тороидальные магниты требуют восьмидесяти тысяч километров сверхпроводящей нити, их общий вес превосходит четыреста тонн, а полностью реактор весит примерно двадцать три тысячи тонн. Эйфелева башня, например, весит всего семь тысяч с небольшим. Плазма ТОКАМАКа состаляет восемьсот сорок кубометров. Высота - семьдесят три метра, шестьдесят из них - под землёй. Для сравнения: Спасская башня имеет высоту всего семьдесят один метр. Площадь платформы реактора - сорок два гектара, как шестьдесят футбольных полей. Температура плазмы - сто пятьдесят миллионов градусов по Цельсию. В центре Солнца она в десять раз ниже. И всё это ради управляемого термоядерного синтеза (горячего).

Физики и химики

Но вернёмся к "забракованному" открытию Флешмана и Понса. Все их коллеги заявляют, что всё-таки удалось создать условия, где атомы дейтерия подчиняются волновым эффектам, ядерная энергия высвобождается в виде тепла в соответствии с теорией квантовых полей. Последняя, кстати, прекрасно разработана, но адски сложна и к описанию каких-то конкретных явлений физики с трудом приложима. Именно поэтому, наверное, люди не хотят её доказывать. Флешман демонстрирует выемку в бетонном полу лаборатории от взрыва, случившегося, как он утверждает, от холодного термояда. Однако физики химикам не верят. Интересно, почему?

Ведь сколько возможностей для человечества закрываются с прекращением исследований в этом направлении! Проблемы же просто глобальные, и их много. И все они требуют решения. Это экологически чистый источник энергии, посредством которого можно было бы дезактивировать громадные объёмы радиоактивных отходов после работы атомных электростанций, опреснять морскую воду и много чего ещё. Если бы освоить выработку энергии способом превращения одних элементов таблицы Менделеева в совершенно другие без использования для этой цели потоков нейтронов, которые создают наведённую радиоактивность. Но наука официально и сейчас считает невозможным превращение каких-либо химических элементов в совершенно другие.

Росси-Пархомов

В 2009 году изобретатель А. Росси запатентовал аппаратуру, названную катализатором энергии Росси, которая реализует холодный термоядерный синтез. Устройство это было неоднократно продемонстрировано на публике, но независимой проверке не подвергалось. Физик Марк Гиббс на страницах журнала морально уничтожил и автора, и его открытие: без объективного анализа, дескать, подтверждающего совпадение полученных результатов с заявленными, это не может быть новостью науки.

Но в 2015 году Александр Пархомов успешно повторил эксперимент Росси с его низкоэнергетическим (холодным) ядерным реактором (LENR) и доказал, что у последнего огромные перспективы, хотя и под вопросом коммерческая значимость. Эксперименты, результаты которых были представлены на семинаре во Всероссийском НИИ эксплуатации атомных электростанций, показывают, что самая примитивная копия детища Росси - его ядерного реактора, может вырабатывать в два с половиной раза больше энергии, чем потребляет.

"Энергонива"

Легендарный учёный из Магнитогорска А. В. Вачаев создал установку "Энергонива", с помощью которой им был обнаружен некий эффект трансмутации элементов и выработка электроэнергии в этом процессе. Верилось с трудом. Попытки обратить внимание фундаментальной науки на это открытие оказались тщетными. Критика раздавалась отовсюду. Наверное, авторам не нужно было самостоятельно выстраивать теоретические выкладки относительно наблюдаемых явлений, или физикам высшей классической школы стоило быть повнимательнее к экспериментам с высоковольтным электролизом.

Но зато была отмечена такая взаимосвязь: ни один детектор не зарегистрировал ни одного излучения, однако рядом с работающей установкой находиться было нельзя. В группе исследователей трудились шесть человек. Пять из них вскоре умерли в возрасте от сорока пяти до пятидесяти пяти лет, а шестой получил инвалидность. Смерть наступила по совершенно разным причинам через некоторе время (в течение примерно семи-восьми лет). И тем не менее на установке "Энергонива" последователями уже третьего поколения и учеником Вачаева были проделаны опыты и сделано предположение, что низкоэнергетическая ядерная реакция имела место в экспериментах погибшего учёного.

И. С. Филимоненко

Холодный термоядерный синтез исследовался в СССР уже в конце пятидесятых годов прошлого века. Реактор был сконструирован Иваном Степановичем Филимоненко. Однако в принципах действия этого агрегата никто не сумел разобраться. Именно поэтому вместо позиции безусловного лидера в области ядерно-энергетических технологий, наша страна заняла место сырьевого придатка, распродающего собственные природные богатства, лишающего целые поколения будущего. А ведь опытная установка уже была создана, и она производила реакцию тёплого синтеза. Автором самых прорывных энергетических конструкций, подавляющих радиацию, был уроженец Иркутской области, прошедший разведчиком всю войну от своих шестнадцати до двадцати лет, орденоносец, энергичный и талантливый физик И. С. Филимоненко.

Термоядерный синтез холодного типа был, как никогда, близок. Тёплый синтез проходил при температуре всего 1150 градусов по Цельсию, а основой была тяжёлая вода. Филимоненко отказали в патенте: якобы ядерная реакция невозможна при такой низкой температуре. Но синтез шёл! Тяжёлая вода разлагалась посредством электролиза на дейтерий и кислород, дейтерий растворялся в палладии катода, где и происходила реакция ядерного синтеза. Производство безотходное, то есть без радиации, а нейтронное излучение тоже осутствовало. Только в 1957 году, заручившись поддержкой академиков Келдыша, Курчатова и Королёва, чей автортет был непререкаем, Филимоненко сумел сдвинуть дело с мёртвой точки.

Распад

В 1960-м году, в связи с секретным постановлением Совета министров СССР и ЦК КПСС, начались работы по изобретению Филимоненко под контролем Министерства обороны. В ходе экспериментов исследователь обнаружил, что при работе реактора появляется некое излучение, сокращающее период полураспада изотопов очень быстро. Чтобы понять природу этого излучения, потребовалось полвека. Теперь мы знаем, что это такое - нейтроний с динейтронием. А тогда, в 1968-м, работа практически остановилась. Филимоненко был обвинён в политической нелояльности.

В 1989 году учёного реабилитировали. Его установки начали было воссоздаваться в НПО "Луч". Но дальше опытов дело не пошло - не успели. Страна погибла, а новым русским было не до фундаментальной науки. Один из лучших инженеров двадцатого века умер в 2013 году, так и не увидев счастья человечества. Мир запомнит Ивана Степановича Филимоненко. Холодный термоядерный синтез когда-нибудь наладят его последователи.