Магнитная или электромагнитная обработка воды, что эффективнее.

Жесткость воды обусловлена наличием в ней солей кальция и магния, которые поступают в подземную воду из омываемых ею грунтов. Просачивание воды через почву приводит к изменению ее солевого состава. Жесткость природных вод не является вредной для здоровья, а скорее наоборот, т.к. кальций способствует выводу из организма кадмия, отрицательно влияющего на сердечно-сосудистую систему.

Однако повышенная жесткость делает воду непригодной для хозяйственно-бытовых нужд, поэтому, согласно ГОСТ 2874-82, норма общей жесткости составляет 7 мг-экв/л, а допустимая величина — 10 мг-экв/л. Значительное количество магния также ухудшает органолептические свойства воды. Использование жесткой воды в хозяйственно-бытовых и промышленных нуждах приводит к весьма нежелательным последствиям:

  1. Непроизводительный расход моющих средств при стирке. Это объясняется тем, что ионы кальция и магния, взаимодействуя с мылами, представляющими собой соли жирных кислот, образуют в воде нерастворимые осадки. Подсчитано, что на каждый литр воды с жесткостью 7,1 мгэкв/л перерасходуется 2,4 г мыла.
  2. Преждевременный износ тканей при стирке в жесткой воде. Волокна тканей адсорбируют кальциевые и магниевые мыла, а это делает их хрупкими и ломкими.
  3. В жесткой воде мясо и бобовые плохо развариваются, при этом понижается питательность продуктов. Вываренные из мяса белки переходят в нерастворимое состояние и плохо усваиваются организмом.
  4. Усиление коррозии нагревательных элементов бытовых приборов и теплообменников вследствие гидролиза (взаимодействия с водой) магниевых солей и повышения рН воды.
  5. Соли кальция и магния образуют твердые отложения (накипь, шлам, водный камень) на поверхности теплообменников и гидравлических бытовых приборов, что снижает экономичность их работы. Металл под нерастворимым осадком CaCO3 перегревается и размягчается, потому что накипь обладает малой теплопроводностью и ее наличие на нагревательных элементах обуславливает увеличение энергозатрат.

Все это приводит к необходимости проведения ремонтных работ, замены трубопроводов и оборудования и, конечно, требует значительных вложений денежных средств. Для умягчения воды традиционно применяются химические методы (реагентный — связывание катионов Ca2+ и Mg2+ практически в нерастворимые соединения; ионный обмен — замена с помощью фильтрования через специальные материалы ионов Ca2+ и Mg2+ на ионы Na+ и Н+).

Альтернативным способом умягчения или, правильнее назвать, способом борьбы с известковыми отложениями является электромагнитная обработка воды. Процессы, протекающие при электромагнитной обработке воды, чрезвычайно разнообразны и сложны, поэтому нет еще единого мнения о механизме этих явлений. Существует ряд гипотез воздействия электромагнитного поля на ионы солей, растворенных в воде.

Первая состоит в том, что под влиянием магнитного поля происходит поляризация и деформация ионов, сопровождающаяся уменьшением их гидратации (степени “рассеянности” в толще воды), повышающей вероятность их сближения и, в конечном счете, образования центров кристаллизации; вторая предполагает действие магнитного поля на коллоидные примеси воды; третья гипотеза объединяет представления о возможном влиянии магнитного поля на структуру воды.

Это влияние, с одной стороны, может вызвать изменения в агрегации молекул воды, с другой — нарушить ориентацию ядерных спинов водорода в ее молекулах. Обработка воды в магнитном поле в основном применяется для борьбы с накипеобразованием. Сущность метода состоит в том, что при пересечении водой магнитных силовых линий катионы солей жесткости выделяются не на поверхности нагрева, а в массе воды.

Метод эффективен при обработке вод кальциевого-карбонатного класса, которые составляют около 80% вод всех водоемов нашей страны и охватывают примерно 85% ее территории. Уменьшение образования накипи и других отложений солей остается наиболее широкой областью применения магнитной обработки. Если в воде присутствуют диссоциирующие соли (реальная вода), при магнитной обработке происходит несколько процессов:

  • смещение электромагнитными силами полей равновесия между структурными компонентами воды;
  • физико-химический механизм увеличения центров кристаллизации в объеме жидкости после ее магнитной обработки, а также изменение скорости коагуляции (слипания и укрупнения) дисперсных частиц в потоке жидкости.

Известно, что магнитная обработка водных систем приводит к следующим физико-химическим изменениям: скорость растворения неорганических солей увеличивается в десятки раз (для MgSO4 — в 120 раз!), в воде после магнитной обработки увеличивается концентрация растворенного кислорода. Также имеются данные, указывающие на бактерицидное действие магнитной обработки воды. По сравнению с традиционным умягчением воды ее магнитная обработка более проста, безопасна и экономична.

Обработанная магнитным способом вода не приобретает никаких побочных, вредных для здоровья человека свойств и не меняет солевой состав, сохраняя вкусовые качества питьевой воды. В приборе MultiSafe — новейшей разработке немецкой фирмы SYR — реализован описанный выше метод электромагнитной обработки воды. Принцип работы MultiSafe заключается в предотвращении образования и выпадения осадков CaCO3 и Mg(OH)2 из обрабатываемой воды за счет изменения ее коллоидно-химического состояния под действием переменного магнитного поля.

Электроды обработочной камеры являются источниками выделения из воды коллоидно-дисперсных частиц карбоната кальция, выполняющих роль центров кристаллизации-затравки. Это самопроизвольное выделение — один из эффективных способов предотвращения образования твердых отложений кальция и магния. Образование твердой фазы происходит на этой затравке благодаря электродинамической диссоциации молекул воды на катионы Н+ и анионы ОН.

ОН-ионы изменяют рН воды в сторону повышения ее щелочности, что приводит к смещению углекислотного равновесия воды от гидрокарбонат-иона (НСО3) к карбонат-иону (СО3 2), т.е. нарушается динамическое равновесие системы, которое может быть описано реакцией:

2НСО3 <=> СО3 2+ СО2 + Н2О

Карбонат-ион СО3 2, вступая в реакцию с растворенным в воде ионом кальция Ca2+ , образует карбонат кальция CaCO3 — более мелкую и легкорастворимую фазу по сравнению с Са(НСО3)2 — образуется так называемая кайма затравочных кристаллов. Далее процесс интенсифицируется. На затравочных кристаллах образуются дополнительные места кристаллизации (сцепления) молекул солей кальция и магния.

Образованные агрегатные структуры остаются во взвешенном мелкодисперсном состоянии и вымываются потоком воды. Рост кристаллов особенно наглядно проявляется при нагреве воды. При этом вода слегка мутнеет. Это обусловлено тем, что, медленно разрастаясь, кристаллы начинают рассеивать свет. Максимально их величина может достигать лишь тысячной доли миллиметра, что не дает им возможности образовывать твердые отложения в виде осадка и накипи.

Обработанная таким образом вода сохраняет антинакипный эффект в течение 28 суток в отличие от других подобных устройств магнитной обработки, представленных в данный момент на российском рынке, результат обработки которых сохраняется от двух до пяти дней. По истечении данного срока вода должна быть обработана повторно. Имеются достоверные эмпирические данные (результаты анализа) о каталитическом действии магнитной обработки MultiSafe на закисную форму железа (Fe2+). Вода, прошедшая установку и дополнительно обработанная угольным фильтром, не содержит Fe2+ , и концентрации на выходе с установки по окисному железу Fe3+ снижены более чем в 3 раза.

Ведь при прочих равных условиях исходная вода не подвергалась процессу обезжелезивания. Наряду с этим магнитная обработка MultiSafe способствует активации процессов адсорбции различных примесей органического происхождения. Магнитная обработка также влияет на электрокинетический потенциал и агрегативную устойчивость взвешенных частиц, благодаря чему ускоряет их осаждение, т.е. способствует извлечению из воды разного рода взвесей.

Прибор устанавливается на вводе холодной воды в дом для одной или даже нескольких семей, т.к. пропускная способность позволяет обрабатывать до 3 м3/ч. Устройство не требует специального обслуживания, процесс полностью автоматизирован. Все обслуживание прибора сводится к замене обработочной камеры через 1,5-2 года работы, что эквивалентно объему воды, потребляемой среднестатистической семьей за данный период.

Прибор MultiSafe находит применение в системах водоснабжения и отопления отдельного дома, коттеджа, для подготовки воды в водогрейных паровых котлах, оборотной воды котельных, для подготовки технологической воды в пищевой, целлюлозно-бумажной, текстильной и других отраслях промышленности и т.д. MultiSafe совмещает в себе функции и устройства защиты, наблюдения и регулировки системы водообеспечения, а именно:

  • модуль электродинамической обработки воды;
  • система защиты от несанкционированного расхода, например, прорыва труб и разного рода утечек;
  • система диагностики и управления работой прибора, а также дополнительные устройства дальнейшей обработки воды, например, фильтры механической очистки DRUFI и угольный фильтр фирмы SYR
  • индикация сбоев и неполадок в работе системы.

Перечисленные модули управляются при помощи центрального процессора. Благодаря жидкокристаллическому дисплею становится возможным отображение, программирование и изменение режимов работы. С помощью клавиатуры можно задать дополнительные пользовательские и рабочие установки. Таким образом, при помощи прибора MultiSafe происходит обработка водного потока переменным магнитным полем.

В результате чего изменяется структура и степень гидратации ионов растворенных солей, и тем самым создаются условия для образования ионных ассоциатов, количество которых зависит от напряженности электромагнитного поля, диамагнитной восприимчивости ионов и других факторов. Возникающие под влиянием магнитного поля ионные ассоциаты являются зародышами новой фазы — сублимикроскопической — и коллоидной стадии дисперсности и впоследствии выполняют роль дополнительных центров кристаллизации. Прямое воздействие магнитного поля на ионы примесей способствует активации процессов адсорбции и открывает широкие перспективы для водоподготовки в целом.

В. В. Банников, канд. техн. наук
Директор предприятия «Экосервис Технохим»
(www.etch.ru)

Общеизвестно, что процессы образования накипи и инкрустаций связаны с наличием в природной воде, в том числе и в пресной, больших количеств растворенных солей кальция и магния. Эти элементы, несомненно, важны для человека, для развития флоры и фауны, но доставляют массу проблем при проектировании и эксплуатации котельного и теплообменного оборудования. Нам всем хорошо знакомы накипь и осадки в нагревательных устройствах, в трубопроводах, в стиральных и посудомоечных машинах, известковые отложения на сантехническом оборудовании, кафеле, а также сухость волос и кожи при мытье водой с высоким содержанием кальция и магния.

О жесткости воды

Природные воды очень разнообразны по химическому составу. Главными примесями речных вод, содержащих 500-600 мг/л растворенных солей, являются ионы кальция, магния, натрия, бикарбонатов, сульфатов и хлоридов. Маломинерализованные речные воды содержат преимущественно ионы кальция и магния.

Солесодержание подземных вод зависит от условий залегания подземного горизонта и меняется от 100-200 мг/л до нескольких граммов на литр. В пресных водах артезианских скважин преобладают ионы Са 2+ и НСО 3 2- . Эти ионы присутствуют во всех минерализованных водах. Источник их появления - природные залежи известняков, гипса и доломитов. В маломинерализованных водах больше всего содержится ионов Са 2+ . Суммарная концентрация катионов кальция и магния, выраженная в мг-экв/л, определяет жесткость воды.

Общую жесткость воды определяют также как сумму карбонатной (временной) и некарбонатной (постоянной) жесткости. Карбонатная жесткость обусловлена присутствием солей гидрокарбонатов кальция и магния и устраняется при кипячении воды. При нагревании воды гидрокарбонаты распадаются с образованием нестойкой угольной кислоты и нерастворимого осадка карбоната кальция и гидроксида магния. Некарбонатная жесткость связана с присутствием в воде кальция и магния в виде солей серной, соляной и азотной кислот. Эта жесткость при кипячении не устраняется .

Жесткая вода непригодна для систем оборотного водоснабжения, для питания паровых и водогрейных котлов, а также практически для всех видов теплообменного оборудования. Отложения солей жесткости приводят к значительному увеличению тепловой энергии на нагрев и к эквивалентному увеличению затрат на расход топлива. Также они отрицательно сказываются на теплообменных и гидравлических характеристиках, выводится из строя насосное, запорное и регулировочное оборудование, ускоряются коррозионные процессы.

На рис. 1 приведена зависимость потерь тепловой энергии в зависимости от толщины слоя отложений солей жесткости (по данным фирмы "Lifescience Products LTD", Великобритания). Слой в 3 мм поглощает 25% тепловой энергии, а если на стенках котла или бойлера наросло 13 мм, то теряется уже 70% тепла. Отложения толщиной 10 мм нарастает менее чем за один год. Многим известно об уровне затрат на ремонт, химические и механические чистки, на замену труб и водонагревательного оборудования.

Если взглянуть на проблему накипи с точки зрения перерасхода топлива при эксплуатации теплоэнергетического оборудования, то картина очень схожая (рис. 2).


Рис. 2. Перерасход топлива в зависимости от толщины слоя накипи на поверхности нагрева .

Из этого графика видно, что 5 мм накипи приводят к перерасходу топлива до 30%, а 10 мм - повышают его расход в два раза.

Специалисты НИИ высоких напряжений рассматривают еще один важный аспект вредного влияния накипи - повышение температуры стенки водогрейной (дымогарной или жаровой) трубы . Для примера на рис. 3 приведена зависимость температуры стенки водогрейной экранной трубы, размещенной в топочном пространстве (температура 1100 °С), от толщины слоя накипи. Данные представлены для различных величин теплопроводности накипи.

Увеличение слоя накипи на поверхности нагрева котла со стороны воды существенно повышает температуру стенки водогрейных труб. В свою очередь, повышение температуры приводит к снижению, как предела прочности металла, так и предела его текучести. При этом образуются свищи, и происходит разрыв труб.


Рис. 3. Влияние толщины слоя накипи и ее теплопроводности на температуру стенки трубы .

В соответствии с ГОСТ 2874-82 «Вода питьевая» жесткость воды не должна превышать 7 мг-экв/л. Однако ряд производств устанавливает более жесткие требования к технологической воде, вплоть до глубокого умягчения (0,01-0,05 мг-экв/л и ниже). В справочнике приведены ориентировочные требования по общей жесткости (мг-экв/л) питательной воды для котлов различных типов:

  • жаротрубные (5-15 ати) - 0,35;
  • водотрубные (15-25 ати) - 0,15;
  • высокого давления (50-100 ати) - 0,035;
  • барабанные (100-185 ати) - 0,005.

Существует ряд способов умягчения воды (процесс удаления ионов Са 2+ и Mg2+). Наиболее распространен химический метод ионного обмена ионов кальция и магния, содержащихся в воде, на натрий или калий, которые не образуют осадков своих солей при нагревании. В умягчителях данного типа работает катионообменная смола, которую периодически нужно регенерировать раствором поваренной соли. Этот метод не лишен существенных недостатков. Использование поваренной соли для регенерации смолы создает проблемы для окружающей среды из-за необходимости утилизации промывных вод с высоким содержанием солей. Из питьевой воды выводятся соли кальция ниже требуемых для нашего организма норм, при этом вода обогащается натрием, далеко не полезным для питья. Ограничен ресурс работы ионообменных смол.

Воду умягчают также с помощью мембранных фильтров, которые фактически ее обессоливают. Этот метод менее распространен из-за высокой стоимости мембран и ограниченного ресурса их работы.

Существуют и другие методы умягчения: термические, реагентные, диализные и комбинированные. Выбор метода умягчения воды определяется ее химическим составом, требуемой степенью умягчения и технико-экономическими показателями.

Магнитная обработка воды

В последние десятилетия, как в России, так и за рубежом для борьбы с образованием накипи и инкрустаций применяют магнитную обработку воды. Ее широко используют в конденсаторах паровых турбин, в парогенераторах низкого давления и малой производительности, в тепловых сетях и системах горячего водоснабжения, в различных теплообменных аппаратах. В сравнении с распространенными методами умягчения воды магнитную обработку отличают простота, дешевизна, безопасность, экологичность, низкие эксплутационные расходы.

Первый патент на аппарат магнитной обработки воды был выдан бельгийскому инженеру Т. Вермейрену в 1946 г. Еще в 1936 г. он обнаружил, что при нагреве воды, пересекшей силовые линии магнитного поля, на поверхности теплообмена накипь не образуется .

Механизм воздействия магнитного поля на воду и содержащиеся в ней примеси окончательно не выяснен, но имеется ряд гипотез. Специалистами МЭИ и МГСУ выполнен большой объем работ по изучению влияния магнитного поля на процессы образования накипи, разработаны аппараты для магнитной обработки воды, сформулированы технические требования и условия их использования для практических целей.

Современные воззрения объясняют механизм воздействия магнитного поля на воду и ее примеси поляризационными явлениями и деформацией ионов солей. Гидратация ионов при обработке уменьшается, ионы сближаются и образуют кристаллическую форму соли. В основу одной из теорий положено влияние магнитного поля на коллоидные примеси воды, по другой - изменяется структура воды. При наложении магнитного поля в массе воды формируются центры кристаллизации, вследствие чего выделение нерастворимых солей жесткости происходит не на теплопередающей поверхности (нагрева или охлаждения), а в объеме воды. Таким образом, вместо твердой накипи в воде появляется мигрирующий тонкодисперсный шлам, который легко удаляется с поверхности теплообменников и трубопроводов. В аппаратах магнитной обработки вода должна двигаться перпендикулярно магнитным силовым линиям.

Очень интересное объяснение механизма магнитной обработки воды предлагает В.А. Присяжнюк в своей работе . Известно, что карбонат кальция может кристаллизоваться в двух модификациях (кальцит или арагонит), при этом основной солью, осаждающейся на теплообменном оборудовании, является карбонат в форме кальцита. Магнитная обработка «заставляет» карбонат кальция кристаллизоваться в виде арагонита, у которого ниже адгезия (прилипание) к материалу теплообменной поверхности, а также ниже силы когезии (слипания) кристаллов между собой. Для объяснения данного явления автор использует теорию магнито-гидродинамического (МГД) резонанса. При пересечении жидкостью магнитных силовых линий создается сила Лоренца, которая и вызывает структурную перестройку карбоната (изменение энтропии вещества) при ее попадании в резонанс с собственными колебаниями частиц вещества (молекулами, ионами, радикалами).

В настоящее время в России выпускают два типа аппаратов для магнитной обработки воды - с постоянными магнитами и электромагнитами. Время пребывания воды в аппарате определяется ее скоростью в пределах 1-3 м/с.

Условия использования аппаратов для магнитной обработки воды приведены в справочнике :

  • подогрев воды должен осуществляться до температуры не выше 95 °С;
  • карбонатная жесткость должна быть не выше 9 мг-экв/л;
  • содержание растворенного кислорода должно быть не более 3 мг/л, а сумма хлоридов и сульфатов - не более 50 мг/л;
  • содержание двухвалентного железа в артезианской воде допускается не больше 0,3 мг/л.

Для определения противонакипного эффекта Э, % используется следующее выражение:

Э = (m н - m м) * 100/ m н, (1)

где - m н и m м - масса накипи, образовавшейся на поверхности нагрева при кипячении в одинаковых условиях одного и того же количества воды с одинаковым исходным химическим составом, соответственно необработанной и обработанной магнитным полем, г.

Несмотря на все достоинства аппаратов для магнитной обработки воды, на практике эффект обработки зачастую проявлялся только в первый период эксплуатации, затем результат пропадал. Появился даже термин - эффект «привыкания» воды. Свои свойства омагниченная вода сохраняет меньше суток. Это явление потери магнитных свойств называется релаксацией. Поэтому в тепловых сетях кроме омагничивания подпиточной воды необходимо обрабатывать воду, циркулирующую в системе путем создания так называемого антирелаксационного контура, при помощи которого обрабатывается вся вода, циркулирующая в системе .

Электромагнитное воздействие
с переменной частотой

В конце прошлого тысячелетия появились зарубежные и отечественные аппараты для обработки воды электромагнитными волнами в диапазоне звуковых частот, которые имеют существенные преимущества перед аппаратами для магнитной обработки воды. Их отличает небольшие габариты, простота монтажа и обслуживания, экологическая безопасность, низкие эксплутационные расходы. Значительно расширен диапазон условий их применения, в первую очередь для воды с высокой жесткостью, отсутствуют высокие требования по общему содержанию солей, устранен эффект «привыкания» воды. Кроме того, обработанная питьевая вода сохраняет кальций и магний, которые необходимы нашему организму для опорно-двигательной, сердечно-сосудистой и нервной систем. Т.е. устройства данного типа можно использовать не только для защиты теплообменного оборудования, систем горячего водоснабжения и пр., но и для систем водоочистки и коммуникаций питьевой воды. Еще одно преимущество этих аппаратов - разрушение сформировавшихся ранее отложений солей жесткости в течение 1-3 месяцев.

В России используются поставляемые из-за рубежа аппараты «Water King» (фирма «Lifescience Products LTD», Великобритания), «Aqua» (фирма «Trebema», Швеция), а также выпускаются аппараты отечественного производства серии «Термит» (предприятие «Экосервис Технохим») .

Электронный преобразователь солей жесткости «Термит» - прибор настенного типа, выпускается в двух модификациях. «Термит» включает микропроцессор, который управляет изменением характеристик электромагнитных волн, генерируемых прибором в диапазоне 1 - 10 кГц. Генерируемые сигналы передаются по проводам - излучателям, которые наматываются на трубопровод. При этом сигналы распространяются в обе стороны трубопровода. С помощью проводов - излучателей поток излучения концентрируется в объеме воды, протекающей в трубопроводе.

Передаваемые электромагнитные волны изменяют структуру солей жесткости с образованием хрупкой арагонитной формы карбоната кальция. При этом прочная смесь аморфных отложений солей жесткости не образуется, а сформировавшиеся ранее отложения разрушаются и уносятся с потоком воды.

Вода при обработке не меняет солевой состав, что сохраняет ее качества питьевой воды без потерь необходимых химических элементов.

Приборы «Термит» выпускаются в соответствии с ТУ 6349-001-49960728-2000 (Гигиеническое заключение № 77.01.06.634.Т.25729.08.0, Сертификат соответствия №РОСС RU.АЮ64.А02379).

Прибор отмечен Дипломами 1 степени ВВЦ и Министерства промышленности, науки и технологий РФ, Золотой медалью ВВЦ и Серебряной медалью Министерства промышленности.

Таблица 1

Технические характеристики приборов «Термит»

По мнению специалистов шведской фирмы «Trebema» под действием электромагнитных волн в диапазоне звуковой частоты бикарбонат кальция, содержащийся в исходной воде, переходит в нерастворимый карбонат кальция. При этом карбонат осаждается не на стенках труб и оборудования, а в объеме воды. Этот процесс описывается следующим химическим уравнением:

Ca(HCO 3) 2 <=> CaCO 3 + H 2 CO 3 (1)

Нестойкая угольная кислота электролитически диссоциирует. Она также склонна к образованию углекислого газа:

CO 2 + H 2 O <=> H 2 CO 3 <=> H + + HCO 3 - (2)

Угольная кислота разрушает старые известковые осадки в трубах, водонагревателях и др. Избыток угольной кислоты смещает равновесие реакции (1) влево, т.е. приводит к повторному образованию бикарбоната кальция. На практике это означает, что в обработанной воде через несколько суток вновь образуется бикарбонат кальция (вода «теряет» свои свойства после электромагнитного воздействия).

Шведскими специалистами опытным путем установлено:

1. Небольшое уменьшение величины рН воды за счет ее подкисления угольной кислотой. Однако это уменьшение настолько мало, что не увеличивает риск коррозии.

2. Изменение электропроводности воды из-за уменьшения величины рН.

3. Уменьшение поверхностного натяжения и капиллярности (требуется меньше моющих средств).

Опытная проверка

В Институте физической химии РАН проведена опытная проверка в сопоставимых условиях эффективности работы преобразователей солей жесткости «Термит» (два образца) и прибора «WK-3» фирмы «Lifescience», Великобритания.

Испытания проводили по следующей экспресс-методике. Искусственно приготовленный раствор в объеме 2 л с общей жесткостью 21,9 мг-экв/л (примерно в 7,5 раз выше жесткости воды р. Москва и в 2,4 раза выше величины допустимой жесткости для систем с магнитной обработкой) и значением рН 7,5-7,8 пропускали в режиме непрерывной циркуляции. Последнюю осуществляли последовательно через стеклянную промежуточную емкость, стальную трубу и фторопластовую цилиндрическую ячейку.

Отложение солей жесткости происходило на алюминиевом диске, помещенном на дне фторопластовой ячейки.

Температуру циркулирующего раствора поддерживали на уровне 85+5 °С. Время циркуляции раствора в каждом опыте - 2,5 часа.

После окончания циркуляции диск вынимали из ячейки, промывали и высушивали на воздухе при 100 °С до постоянного веса. По разнице веса диска до и после эксперимента определяли количество осадка на нем солей жесткости. По выражению (1) находили противонакипной эффект. С каждым прибором проводили два параллельных опыта.

Результаты испытаний электронных преобразователей солей жесткости в водных растворах различных модификаций и контрольных опытов (без обработки воды) приведены в таблице 2.

Таблица 2

Результаты испытаний приборов различных модификаций

Приведенные в таблице 2 данные показывают, что электромагнитное воздействие на воду с высокой жесткостью даже в течение короткого времени позволяет снизить количество отложений солей жесткости, образующихся на стенках, на 24-30%. При этом эффективность всех исследованных аппаратов в одних и тех же условиях (уровень жесткости, температура, диаметр и длина стальной трубы) примерно одинакова. Следует отметить, что в опытах вода из цикла не отводилась, поэтому угольная кислота, накапливающаяся в цикле, в соответствие с химической реакцией (1) приводила к стационарному состоянию системы карбонат (осадок на диске) - карбонат (нерастворенные частицы в объеме воды) - бикарбонат. При отводе воды из цикла (как в основном и бывает на практике) равновесие реакции (1) сдвигается вправо, т.е. противонакипной эффект должен увеличиваться.

Впоследствии предприятием «Экосервис Технохим» совместно с Институтом теоретической и прикладной электродинамики РАН (Рыжиков И.А. и сотрудники) были продолжены исследования по влиянию работы прибора «Термит» на процесс образования накипи для проточных водных систем при различных температурах.

Все эксперименты проводились с использованием воды из городской сети (г. Москва, Северный округ). Вода имела следующий состав:

  • жесткость общая - 2,9-3,1 мг-экв/л, в том числе карбонатная - 2 мг-экв/л;
  • свободная углекислота СО 2 - 4,4 мг/л;
  • общая минерализация - 170-200 мг/л;
  • железо - 0,14-0,18 мг/л;
  • окисляемость - 7,2 мг О 2 /л;
  • соотношение содержания кальция и магния - 4/1 мг/мг;
  • величина рН - 7,25-7,3.

В соответствии со СНиП расчет индекса насыщения данной воды карбонатом кальция (стабильность воды) показывает величину J = 0,15. Это означает, что вода способна к отложению карбоната кальция. СНиП допускает в данном случае использовать магнитный способ для противонакипной обработки воды.

Опытная установка включала проточную ячейку в виде кварцевого сосуда с тубусом, в который помещались исследуемые образцы из оцинкованной стали. Температура в зоне образцов поддерживалась с точностью + 2 °С. Вода в ячейку поступала из водопроводной сети с предварительным подогревом. На питающий трубопровод установлены обмотки проводов-излучателей прибора «Термит». Время осаждения накипи на образцах составляло до 8 часов.

Экспериментальные данные показали, что наибольший противонакипной эффект наблюдается при интенсивном кипении воды в зоне размещения образцов. При включении в работу прибора «Термит» привес массы накипи на образцах составил величину в 8-12 раз меньшую, чем привес накипи на тех же образцах без обработки воды.

При уменьшении температуры воды (примерно 98 °С; на грани кипения) относительная разница в привесе накипи понизилась до 3-5 раз. И, наконец, при температуре воды примерно 70 °С относительная разница в привесе незначительна.

Полученные результаты можно объяснить значительным влиянием на процесс накипеобразования содержания в воде углекислоты. При кипении воды парциальное давление углекислого газа в воде существенно уменьшается , равновесие реакции (1) сдвинуто влево. Бикарбонат натрия интенсивно распадается на ионы карбонатов, углекислый газ и воду:

Ca(HCO 3) 2 → CaCO 3 ↓ + H 2 O + СО 2 (3)

Интенсивное удаление углекислого газа при кипении воды «облегчает» работу прибора «Термит» с точки зрения более интенсивного образования осадка нерастворимого карбоната кальция CaCO 3 в объеме воды, а не на поверхности образцов. При понижении температуры воды удаление углекислого газа менее интенсивно, соответственно и снижается противонакипной эффект.

Параллельно изучалось также изменение структуры осадка солей жесткости. В экспериментах на стальные оцинкованные образцы предварительно осаждали соли жесткости из потока воды. Далее образцы помещали в поток воды, обработанной с помощью прибора «Термит».

Исследования структуры образцов проводились с помощью атомно-силового микроскопа при увеличении *10000. Полученные результаты представлены на рис. 4 и 5. Из графиков видно, что без обработки воды осадок имеет плотную аморфную структуру. При включении прибора «Термит» (5 часов работы) проявляется гранулярная структура осадка, что свидетельствует о его размягчении и расслаивании. Почти в 2 раза уменьшилась и высота отложений.


Рис. 4. Водный осадок солей жесткости на стальной подложке (вода без обработки).


Рис. 5. Водный осадок солей жесткости через 5 часов работы прибора «Термит».

При подборе типа прибора электромагнитной обработки воды в диапазоне звуковых частот (по диаметру трубопровода) и оптимального режима его эксплуатации следует руководствоваться эмпирические зависимости (2) и (3).

Для прямоточных систем водоснабжения:

Q ≤ (0,005 ÷ 0,010) d² (2)

где Q - расход воды, м³/час, d - внутренний диаметр трубопровода, мм.

Для системы с циркуляционным контуром:

Qрасх. / Qцирк. ≤ 0,8 (3)

где Qрасх. - количество воды, отбираемой из системы на потребление, м³/час, Qцирк. - объемный расход воды, циркулирующий в системе, м3/час.

Также нужно учитывать, что электромагнитной обработке подвержена только карбонатная жесткость.

Противонакипной эффект будет увеличиваться (это нужно учитывать при установке прибора):

  • с повышением температуры воды вплоть до температуры кипения,
  • при более высоком содержании ионов Ca 2+ и Mg 2+ ,
  • с понижением содержания в воде углекислоты,
  • с повышением щелочности воды,
  • при уменьшении общей минерализации.
  • при увеличении степени турбулентности потока воды.

Прибор нужно устанавливать как можно ближе к защищаемому оборудованию. При наличии в системе центробежного насоса прибор электромагнитной обработки устанавливается после него.

Опыт практического использования

Автономные газовые теплогенераторы модульного типа для децентрализованного теплоснабжения «Гейзер» производства НП ЗАО «Теплогаз», г. Владимир.

На модульные теплогенераторы мощностью 240-600 кВт устанавливали приборы «Термит», а на установки мощностью 600-1200 кВт - приборы «Термит-М».

При эксплуатации установок «Гейзер» мощностью от 240 до 1200 кВт (площадь отапливаемых помещений от 3000 до 15000 м² соответственно), снабженных прибором «Термит», в течение двух лет отмечено следующее:

  • периодический осмотр теплообменных поверхностей (трубок) теплогенераторов показывает, что образующаяся накипь имеет пористую, легко удаляемую структуру, при этом теплопроводность практически не уменьшается;
  • до применения приборов накипь имела твердую, трудноудаляемую с поверхности структуру, что приводило к быстрому зарастанию трубок;
  • расходы природного газа на нагрев уменьшены на 10-15 %;
  • не было остановок работы теплогенераторов из-за образовавшейся накипи.
Воздушный компрессор 2ВМ4-24/9С производства московского завода «Борец», г. Владимир.

На трубопроводе диаметром 50 мм для подачи артезианской воды с целью охлаждения воздушного компрессора и концевого холодильника ХРК 9/8 установлен прибор «Термит». После эксплуатации компрессора в течение 3-х месяцев в цехе химического завода отмечено:

  • на поверхности водяных «рубашек» компрессора и концевого холодильника отложений солей жесткости при осмотре не наблюдалось;
  • в полостях водяных «рубашек» компрессора обнаружены жесткие отслоения в виде ржавых пластин, которые образовались в результате разрушения слоя накипи на поверхности «рубашек» под воздействием работы прибора «Термит»;
  • химический анализ воды как артезианской, так и на сливе воды из охлаждаемого оборудования, показывает практически одинаковый химический состав (общая жесткость, щелочность, хлориды, железо, сульфаты, марганец).
Холодильная установка мясоперерабатывающего комбината, г. Пенза.

Провода-излучатели прибора «Термит-М» были установлены на входной трубопровод диаметром 250 мм перед его разветвлением на два подводящих трубопровода соответственно к двум пластинчатым теплообменникам МК-15. Последние функционируют в системе конденсаторного узла аммиачной холодильной установки.

Вода из скважины, поступающая в теплообменники, имела следующий химический состав:

  • железо общее - 0,35 мг/л,
  • жесткость общая - 7,7 мг-экв/л,
  • pН - 7,19,
  • солесодержание - 488,7 мг/л,
  • хлориды (Cl-) - 205 мг/л,
  • окисляемость - 28,4 мг/л.

Вода непрерывно циркулирует через пластинчатые теплообменники МК-15.

При указанной жесткости исходной воды процесс эксплуатация теплообменников МК-15 существенно осложнен из-за очень быстрого зарастания межпластинчатого пространства солями жесткости. Требуется разбирать теплообменники и прочищать их с использованием химических реактивов.

За время эксплуатации преобразователя «Термит-М» в течение 1-1,5 месяцев отмечено некоторое накопление твердого осадка солей жесткости в межпластинчатом пространстве теплообменников. Данное обстоятельство очевидно связано с размягчением и разрыхлением старых сформировавшихся осадков солей жесткости с поверхности трубопроводов и теплообменников.

По прошествии трех месяцев испытаний, после вскрытия теплообменников на поверхности пластин наблюдался незначительный, легко удаляемый осадок коричневатого цвета. Цвет осадка, по-видимому, связан с внедрением в его структуру окисленных ионов железа (Fe3+) и продуктов коррозии. Трудноудаляемых, плотных осадков накипи на поверхности пластин теплообменников не замечено. Это свидетельствует о том, что под воздействием электромагнитного излучения в диапазоне звуковых частот соли жесткости преобразуются в такое состояние, что они либо не высаживаются на теплообменной поверхности, либо высаживаются частично в виде осадка гранулярной структуры, который легко удаляется потоком воды.

Теплообменная аппаратура спиртового производства, г. Мценск.

Два прибора серии «Термит» были смонтированы на линии подачи охлаждающей воды в пластинчатые теплообменники для снижения температуры сусла с 110 до 60 °С. За время эксплуатации в течение 1,5 лет удалось увеличить время между чистками теплообменников в 4-6 раз.

Прибор «Термит-М» в течение такого же времени эксплуатировался на линии водопровода, питающей дефлегматоры и конденсаторы брагоректификационной установки. Температура воды на выходе из установки составляла около 78 °С. После установки прибора интервал времени между чистками аппаратуры увеличился более чем в 5 раз. Оразующийся осадок солей жесткости имеет более рыхлую структуру. Отмечено также растворение ранее существовавшей накипи.

Стеклоформующие машины, стекольный завод, г. Гусь-Хрустальный.

В системе оборотного водоснабжения для охлаждения технологического оборудования стеклоформующих машин фирмы «Walter» были установлены четыре прибора «Термит». За годовой период эксплуатации отмечено резкое снижение скорости зарастания теплообменных трубок солями жесткости. Устранена твердая структура накипи, благодаря чему существенно улучшен режим охлаждения оборудования.

Электродиализная установка ДВС-800М для получения деионизованной воды, г. Подольск.

Прибор «Термит» установлен на линии подачи воды в электродиализный аппарат в цехе химико-металлургического завода.

После установки прибора «Термит» удельная электропроводность фильтрата уменьшалась до 2-3 мкСм/см. В течение 3-х месяцев эксплуатации установки с прибором «Термит» удельная электропроводность очищенной воды поддерживалась на уровне 2,5 мкСм/см, т.е. качество очищенной воды по содержанию примесей улучшилось примерно на 24%.

Таким образом, можно сделать вывод, что работа прибора способствует более активному переходу примесей из исходной воды в концентрат.

В заключение можно отметить, что приборы «Термит» успешно работают более чем на полутора тысяч объектах. Они используются для защиты и очистки от отложений солей жесткости следующих систем и оборудования:

  • водопроводные коммуникации, системы центрального отопления;
  • водонагревательное и отопительное оборудование - котлы, бойлеры, парогенераторы, радиаторы;
  • оборудование для очистки и подготовки воды, в том числе питьевой;
  • форсунки и распылительные устройства;
  • электролизеры, электродиализные установки;
  • системы кондиционирования воздуха;
  • системы охлаждения с циркуляционной водой;
  • санитарно-техническое оборудование: гидромассажные ванны, раковины, душевые;
  • бытовая техника - стиральные и посудомоечные машины; кухонное оборудование.

Литература

1. Фрог Б.Н., Левченко А.П. Водоподготовка. М.: издательство МГУ, 1996. 680 с.

2. Интернет-сайт НИИ Высоких напряжений при Томском политехническом университете. www.impulse.ru/volna , июль 2004 г.

3. Лифщиц О.В. Справочник по водоподготовке котельных установок. М.: Энергия, 1976. 288 с.

4. Присяжнюк В.А. Физико-химические основы предотвращения кристаллизации солей на теплообменных поверхностях. Журнал «Сантехника, отопление, кондиционирование», № 10, 2003 г., с. 26-30.

5. Рэт Д. Теория накипи или практика магнетизма, журнал «Мир новосела», №1, 2002 г., с. 92-98.

6. Строительные Нормы и Правила 2.04.02-84* «Водоснабжение. Наружные сети и сооружения».

7. Строительные Нормы и Правила 2.04.07-86* «Тепловые сети. Схемы тепловых сетей, системы теплоснабжения».

8. Гнеденков С.В., Синебрюхов С.Л., Коврянов А.Н. и др. Влияние покрытий на интенсивность процессов солеотложения. Институт химии Дальневосточной РАН. Электронный журнал «Исследовано в России», 2003 г.

9. Патент РФ № 2174960 от 20.10.01 г. «Устройство для обработки воды».

Издательство: ООО ИИП «АВОК–ПРЕСС»
Специализированный журнал «Энергосбережение», 2005 г.

Природная вода, как известно, представляет собой сложную многокомпонентную динамическую систему, в состав которой входят различные соли, органические вещества (фульвокислоты, гуматы), газы, диспергированные примеси и взвешенные вещества (глинистые, песчаные, гипсовые и известковые частицы), гидробионты (планктон, бентос, нейстон), бактерии, вирусы. В истинно растворенном состоянии в воде находятся минеральные соли, обогащающие воду ионами, их источниками являются природные залежи известняков, гипсов и доломитов.

Жесткость воды обусловлена наличием в ней солей кальция и магния, которые поступают в подземную воду из омываемых ею грунтов. Просачивание воды через почву приводит к изменению ее солевого состава. Жесткость природных вод не является вредной для здоровья, а скорее наоборот, т.к. кальций способствует выводу из организма кадмия, отрицательно влияющего на сердечно-сосудистую систему. Однако повышенная жесткость делает воду непригодной для хозяйственно-бытовых нужд, поэтому, согласно ГОСТ 2874-82, норма общей жесткости составляет 7 мг-экв/л, а допустимая величина - 10 мг-экв/л. Значительное количество магния также ухудшает органолептические свойства воды. Использование жесткой воды в хозяйственно-бытовых и промышленных нуждах приводит к весьма нежелательным последствиям:

  1. Непроизводительный расход моющих средств при стирке. Это объясняется тем, что ионы кальция и магния, взаимодействуя с мылами, представляющими собой соли жирных кислот, образуют в воде нерастворимые осадки. Подсчитано, что на каждый литр воды с жесткостью 7,1 мг-экв/л перерасходуется 2,4 г мыла.
  2. Преждевременный износ тканей при стирке в жесткой воде. Волокна тканей адсорбируют кальциевые и магниевые мыла, а это делает их хрупкими и ломкими.
  3. В жесткой воде мясо и бобовые плохо развариваются, при этом понижается питательность продуктов. Вываренные из мяса белки переходят в нерастворимое состояние и плохо усваиваются организмом.
  4. Усиление коррозии нагревательных элементов бытовых приборов и теплообменников вследствие гидролиза (взаимодействия с водой) магниевых солей и повышения рН воды.
  5. Соли кальция и магния образуют твердые отложения (накипь, шлам, водный камень) на поверхности теплообменников и гидравлических бытовых приборов, что снижает экономичность их работы. Металл под нерастворимым осадком CaCO3 перегревается и размягчается, потому что накипь обладает малой теплопроводностью и ее наличие на нагревательных элементах обуславливает увеличение энергозатрат.

Все это приводит к необходимости проведения ремонтных работ, замены трубопроводов и оборудования и, конечно, требует значительных вложений денежных средств.
Для умягчения воды традиционно применяются химические методы (реагентный - связывание катионов Ca2+ и Mg2+ практически в нерастворимые соединения; ионный обмен - замена с помощью фильтрования через специальные материалы ионов Ca2+ и Mg2+ на ионы Na+ и Н+). Альтернативным способом умягчения или, правильнее назвать, способом борьбы с известковыми отложениями является электромагнитная обработка воды.
Процессы, протекающие при электромагнитной обработке воды, чрезвычайно разнообразны и сложны, поэтому нет еще единого мнения о механизме этих явлений.
Существует ряд гипотез воздействия электромагнитного поля на ионы солей, растворенных в воде. Первая состоит в том, что под влиянием магнитного поля происходит поляризация и деформация ионов, сопровождающаяся уменьшением их гидратации (степени ТрассеянностиУ в толще воды), повышающей вероятность их сближения и, в конечном счете, образования центров кристаллизации; вторая предполагает действие магнитного поля на коллоидные примеси воды; третья гипотеза объединяет представления о возможном влиянии магнитного поля на структуру воды. Это влияние, с одной стороны, может вызвать изменения в агрегации молекул воды, с другой - нарушить ориентацию ядерных спинов водорода в ее молекулах.
Обработка воды в магнитном поле в основном применяется для борьбы с накипеобразованием. Сущность метода состоит в том, что при пересечении водой магнитных силовых линий катионы солей жесткости выделяются не на поверхности нагрева, а в массе воды. Метод эффективен при обработке вод кальциевого-карбонатного класса, которые составляют около 80% вод всех водоемов нашей страны и охватывают примерно 85% ее территории.
Уменьшение образования накипи и других отложений солей остается наиболее широкой областью применения магнитной обработки.
Если в воде присутствуют диссоциирующие соли (реальная вода), при магнитной обработке происходит несколько процессов:

  • смещение электромагнитными силами полей равновесия между структурными компонентами воды;
  • физико-химический механизм увеличения центров кристаллизации в объеме жидкости после ее магнитной обработки, а также изменение скорости коагуляции (слипания и укрупнения) дисперсных частиц в потоке жидкости.

Известно, что магнитная обработка водных систем приводит к следующим физико-химическим изменениям: скорость растворения неорганических солей увеличивается в десятки раз (для MgSO4- - в 120 раз!), в воде после магнитной обработки увеличивается концентрация растворенного кислорода. Также имеются данные, указывающие на бактерицидное действие магнитной обработки воды.
По сравнению с традиционным умягчением воды ее магнитная обработка более проста, безопасна и экономична. Обработанная магнитным способом вода не приобретает никаких побочных, вредных для здоровья человека свойств и не меняет солевой состав, сохраняя вкусовые качества питьевой воды.
В приборе MultiSafe - новейшей разработке немецкой фирмы SYR - реализован описанный выше метод электромагнитной обработки воды. Принцип работы MultiSafe заключается в предотвращении образования и выпадения осадков CaCO3 и Mg(OH)2 из обрабатываемой воды за счет изменения ее коллоидно-химического состояния под действием переменного магнитного поля. Электроды обработочной камеры являются источниками выделения из воды коллоидно-дисперсных частиц карбоната кальция, выполняющих роль центров кристаллизации-затравки. Это самопроизвольное выделение - один из эффективных способов предотвращения образования твердых отложений кальция и магния. Образование твердой фазы происходит на этой затравке благодаря электродинамической диссоциации молекул воды на катионы Н+ и анионы ОН- . ОН--ионы изменяют рН воды в сторону повышения ее щелочности, что приводит к смещению углекислотного равновесия воды от гидрокарбонат-иона (НСО3-) к карбонат-иону (СО32-), т.е. нарушается динамическое равновесие системы, которое может быть описано реакцией: 2НСО3- СО32- + СО2 + Н2О
Карбонат-ион СО32-, вступая в реакцию с растворенным в воде ионом кальция Ca2+, образует карбонат кальция CaCO3 - более мелкую и легкорастворимую фазу по сравнению с Са(НСО3)2 - образуется так называемая кайма затравочных кристаллов. Далее процесс интенсифицируется. На затравочных кристаллах образуются дополнительные места кристаллизации (сцепления) молекул солей кальция и магния. Образованные агрегатные структуры остаются во взвешенном мелкодисперсном состоянии и вымываются потоком воды. Рост кристаллов особенно наглядно проявляется при нагреве воды. При этом вода слегка мутнеет. Это обусловлено тем, что, медленно разрастаясь, кристаллы начинают рассеивать свет. Максимально их величина может достигать лишь тысячной доли миллиметра, что не дает им возможности образовывать твердые отложения в виде осадка и накипи.
Обработанная таким образом вода сохраняет антинакипный эффект в течение 28 суток в отличие от других подобных устройств магнитной обработки, представленных в данный момент на российском рынке, результат обработки которых сохраняется от двух до пяти дней. По истечении данного срока вода должна быть обработана повторно.
Имеются достоверные эмпирические данные (результаты анализа) о каталитическом действии магнитной обработки MultiSafe на закисную форму железа (Fe2+). Вода, прошедшая установку и дополнительно обработанная угольным фильтром, не содержит Fe2+, и концентрации на выходе с установки по окисному железу Fe3+ снижены более чем в 3 раза. Ведь при прочих равных условиях исходная вода не подвергалась процессу обезжелезивания. Наряду с этим магнитная обработка MultiSafe способствует активации процессов адсорбции различных примесей органического происхождения. Магнитная обработка также влияет на электрокинетический потенциал и агрегативную устойчивость взвешенных частиц, благодаря чему ускоряет их осаждение, т.е. способствует извлечению из воды разного рода взвесей.
Прибор устанавливается на вводе холодной воды в дом для одной или даже нескольких семей, т.к. пропускная способность позволяет обрабатывать до 3 м3/ч. Устройство не требует специального обслуживания, процесс полностью автоматизирован. Все обслуживание прибора сводится к замене обработочной камеры через 1,5-2 года работы, что эквивалентно объему воды, потребляемой среднестатистической семьей за данный период.
Прибор MultiSafe находит применение в системах водоснабжения и отопления отдельного дома, коттеджа, для подготовки воды в водогрейных паровых котлах, оборотной воды котельных, для подготовки технологической воды в пищевой, целлюлозно-бумажной, текстильной и других отраслях промышленности и т.д. MultiSafe совмещает в себе функции и устройства защиты, наблюдения и регулировки системы водообеспечения, а именно:

  • модуль электродинамической обработки воды;
  • система защиты от несанкционированного расхода, например, прорыва труб и разного рода утечек;
  • система диагностики и управления работой прибора, а также дополнительные устройства дальнейшей обработки воды, например, фильтры механической очистки DRUFI и угольный фильтр фирмы SYR
  • индикация сбоев и неполадок в работе системы.

Перечисленные модули управляются при помощи центрального процессора. Благодаря жидкокристаллическому дисплею становится возможным отображение, программирование и изменение режимов работы. С помощью клавиатуры можно задать дополнительные пользовательские и рабочие установки.
Таким образом, при помощи прибора MultiSafe происходит обработка водного потока переменным магнитным полем. В результате чего изменяется структура и степень гидратации ионов растворенных солей, и тем самым создаются условия для образования ионных ассоциатов, количество которых зависит от напряженности электромагнитного поля, диамагнитной восприимчивости ионов и других факторов. Возникающие под влиянием магнитного поля ионные ассоциаты являются зародышами новой фазы - сублимикроскопической - и коллоидной стадии дисперсности и впоследствии выполняют роль дополнительных центров кристаллизации. Прямое воздействие магнитного поля на ионы примесей способствует активации процессов адсорбции и открывает широкие перспективы для водоподготовки в целом.

Технические данные MultiSafe:KLS 3000KS 3000LSПодключенияDN 20-32DN 20-32DN20-32Рабочая средапитьевая водапитьевая водапитьевая водаМаксимальный проток3,0 м3/ч3,0 м3/ч3,5 м3/чМинимальный проток0,1 м3/ч0,1 м3/ч0,1 м3/чПотери давления при номинальном протоке0,5 бар0,5 бар0,5 барМинимальное рабочее давление2,0 бар2,0 бар2,0 барМаксимальное рабочее давление10 бар10 бар10 барМаксимальная жесткость воды14,3 мэкв/л14,3 мэкв/л-Минимальная жесткость воды3,56 мэкв/л3,56 мэкв/л-Максимальная температура на входе300С300С300СМаксимальная температура помещения400С400С400СИнтервал эксплуатации обработочной камеры400 м3400 м3-Напряжение230В/50Гц230В/50Гц230В/50ГцЭлектрическая мощность55 Вт55 Вт12 ВтМощность в дежурном режиме5 Вт5 Вт5 ВтГабариты В/Ш/Г (мм)700/318345700/215/345560/318/355Класс защитыIP 21IP 21IP 21Номер заказа2400.00.0002402.00.0002401.00.000

Напряжение питания, В —— 220/12

Ток потребления, А —— 0,5..2

Частота импульсной обработки воды, Гц —— 20…2000

Форма сигнала — треугольник или прямоугольный импульс

Научные исследования подтверждают изменение свойств воды при внешнем электромагнитном воздействии. Дождевая вода или полученная в результате таяния снега, по свойствам значительно отличается от воды из подземных источников артезианских скважин и естественных выходов на поверхность земли в виде ключей.

В подземной воде отсутствуют электромагнитные свойства. Вода в виде дождевых осадков заряжена грозовыми разрядами, отличительная способность такой воды — легкое усвоение растениями, при этом ускоряется их рост при почти полном отсутствии микроэлементов.

Во многих районах возможность использования дождевой или снеговой воды для полива растений ограничено из-за малого количества природных осадков, приходится пользоваться водой, взятой из водопровода, в которую также добавлено ядовитое вещество — хлор, который снижает качественные показатели воды.

В садоводствах хлор в воду не добавляют, вода используется из артезианских скважин с больших глубин. Ускорить рост растений позволяет использование артезианской воды после обработки электромагнитным полем, что приводит к повышению урожайности, снижению заболеваемости растений.

Ранее, в торговле, можно было купить металлическую вставку в водопровод, обладающую электромагнитными свойствами, но в данном устройстве не было возможности варьировать изменения свойств воды с целью подбора оптимального варианта — мощности излучения, его частоты, изменения формы электромагнитного поля.

Простой переносной прибор для электромагнитной обработки воды легко выполнить, используя катушку из медного провода, подключенную к источнику постоянного тока. Катушка крепится на неметаллический поливочный шланг водопровода. На время разбора воды через катушку подается постоянный электрический ток от сетевого блока питания или от небольшого аккумулятора. Простота такого схемного решения не позволяет провести исследования с целью получения оптимального варианта, для этого разработана электронная схема, которая позволяет проводить изменение частоты, мощности и формы электромагнитного поля с целью качественной поляризации атомов воды, солей и минералов, растворимых в воде.

Принципиальная схема (рис. 1) состоит из генератора частоты на аналоговом таймере DA1, усилителе мощности на биполярных транзисторах VT2-VT3 и блоке питания на силовом трансформаторе Т2.

Для установки оптимального режима обработки воды в схему введены: регулятор частоты на переменном резисторе R3, регулятор мощности на резисторе R6, переключатель SA1 формы сигнала — прямоугольного или треугольного.

Мультивибратор на микросхеме аналогового таймера работает в режиме генератора прямоугольных импульсов, в первом случае импульс используется без изменений, во втором случае с помощью зарядного конденсатора СЗ импульс переводится в форму пилы.

Внутренняя структура микросхемы таймера состоит из верхнего и нижнего компараторов, в виде операционных усилителей; RS-триггера; выходного усилителя и ключевого транзистора, используемого для разрядки внешнего конденсатора.

Питание на выводы 8 и1 микросхемы подается от стабилизированного источника тока на транзисторе VT1, это снижает влияние мощных импульсных токов при электромагнитной обработке воды на работу таймера.

Вывод 4 — сброс в работе не используется и подключен к плюсу источника питания, для устранения влияния ложных срабатываний таймера.

Вывод 7 таймера — вывод коллектора внутреннего транзистора сброса, эмиттер которого подключен к общему проводу. Состояние этого транзистора идентично с состоянием выхода 3, открыт — когда на выходе таймера нулевой потенциал и заперт, когда присутствует напряжение. В данной схеме электромагнитной обработки воды он используется как вспомогательный выход с повышенной нагрузочной способностью для индикации состояния микросхемы таймера. Светодиод HL1 горит, когда внутренний транзистор заперт, указывая, что на выходе 3 таймера высокое напряжение. Вход 2 таймера -управление переключением выходного напряжения, вход 6 — переключение выхода 3 в нулевое состояние при напряжении на конденсаторе С1 выше 2/3Un.

Зарядка конденсатора С1 происходит при высоком уровне на выходе 3 через резисторы R2 и R3 "Частота". По окончании зарядного цикла при 2/3Un внутренний триггер микросхемы переключит выход 3 на нулевой уровень, конденсатор С1 разрядится через цепи R2, R3, R4, R6, на выходе появится прямоугольный импульс высокого уровня, триггер вернется в исходное состояние и повторится процесс заряда конденсатора С1.

Вывод 5 в микросхеме позволяет получить прямой доступ к точке делителя с уровнем 2/3Un. Данный вывод в схеме не используется и соединен с общим проводом через конденсатор С2.

Стабилизация напряжения питания микросхемы DA1 выполнена на транзисторе VT1 с цепями стабилизации напряжения базы, резистором R5 и стабилитроном VD2.

Частота следования импульсов зависит от сопротивления резистора R3 "Частота".

Усилитель мощности выполнен на транзисторах с большим коэффициентом усиления для увеличения быстродействия схемы и раскачки выходного каскада на транзисторе VT3, при высоком уровне импульса тока в катушке L1.

Конденсатор СЗ в базовой цепи транзистора VT2 позволяет сформировать из прямоугольного импульса таймера треугольную форму. Тумблером SA1 определяется режим обработки сигнала таймера. Резистор R7 позволяет создать небольшое смещение на базе входного транзистора усилителя мощности.

Импульсный диод VD3 в цепи коллектора транзистора VT2 позволяет защитить схему при обратной полярности напряжения источника питания.

Электромагнитная катушка L1 защищена от пробоя обратным напряжением импульса тока диодом VD4. Конденсатор СЗ создает на катушке резонанс напряжения, увеличивая амплитуду импульса тока.

Блок питания прост по исполнению и выдает 14… 16 В напряжения при токе 1 …2 А, возможно использовать любой сетевой адаптер с близкими характеристиками.

Работа устройства электромагнитной обработки воды основана на формировании импульсного тока в электромагнитной катушке с целью поляризации воды и содержащихся в ней примесей. Полив растений обработанной водой повышает урожай на 25…30%. При использовании прибора в бытовых условиях электромагнитная обработка воды предотвращает образование накипи и отложений в трубах горячей и холодной воды, смягчает воду, что снижается расход стиральных порошков, электроэнергии и времени при стирке.

В приборе установлены заводские радиодетали: таймер типа 555 или КР1006ВИ1, резисторы — МЛТ-0,125, переменные СП-3-4АМ. Конденсаторы типа КМ и К53.

Транзисторы с высоким коэффициентом усиления, более 100. Катушка L1 имеет 200 витков провода диаметром 0,23 мм, намотанным на картонный патрон диаметром 28 мм. Патрон одевается на поливочный шланг, на схему подается напряжение, регуляторы частоты и мощности предварительно выставляются в среднее положение. При работе индикатор HL1 должен заметно мигать на нижней частоте генератора, катушка и выходной транзистор при работе немного греются, что является нормальным состоянием.

На выходной транзистор типа КТ-82ЭА (аналог D333) крепится радиатор.

Диодный мост VD5 применен на большой ток, до 30 А, используется без радиатора и может заменен на два диода КД213Б.

В лабораторных условиях работоспособность схемы по магнитным свойствам проверить несложно: при подаче напряжения катушка L1 втягивает в себя стальную отвертку средних размеров, ток потребления при этом достигает в амплитуде до 6 А, средний — 1 …1,5 А.

При отсутствии на даче напряжения электросети схему прибора можно питать от старого аккумулятора, предварительно зарядив его от блока питания. Аккумулятор следует подключить к плюсу диодного моста VD5 или вместо катушки L1 в соответствующей полярности. Окончание зарядки — по началу обильного кипения электролита. Перезаряда не произойдет, так как вторичные обмотки трансформатора Т2 соединены в выходное напряжение 12 В.

Электронную схему прибора можно использовать и для питания электродвигателей постоянного тока в сверлильных станках и по другим назначениям, обороты можно регулировать регулятором мощности R6, а двигатель подключить к точкам подключения катушки L1.

Печатный монтаж выполнен на одностороннем стеклотекстолите. Размер платы (рис. 2) — 75×36 мм.

Регулятор частоты, мощности, индикатор работы и тумблер формы сигнала установлены на передней панели прибора, блок питания выполнен в отдельном корпусе и соединен с электронной схемой двухжильным проводом сечением 2,5 мм2.



На сегодня много слухов, много споров идет вокруг применения силы магнитного поля, как варианта умягчать воду и очищать зараженные старой накипью поверхности. Люди скептически относятся к магнитному воздействию. Его работу сразу заметить невозможно, его нельзя увидеть на конкретном примере. И российский недоверчивый народ все еще считает магнитное облучение мифом.

И, тем не менее, в некоторых отраслях промышленности устройства магнитной и электромагнитной обработки воды используются весьма успешно. В промышленности вообще больше знают о работе таких приборов. И отзывы сплошь и рядом положительные. Обработка воды подобным образом помогает решить сразу две проблемы, в то время, как применение других умягчающих устройств направлена исключительно на умягчение воды.

Магнитные же силы работают сразу по двум направлениям:

  • Очищение поверхностей даже в самых неудобных, труднодоступных местах;
  • Умягчение

При этом устройства не дают питьевого качества воде. Но за такой двойной плюс они просто бесценны, т.к. помогают в течение долгого времени и не вспоминать о чистках, промывках и т.п.

Содержать поверхности отопительного оборудования в чистоте крайне важно. Если этим пренебречь, то очень скоро прибор начнет барахлить. У накипи, которая всегда образуется при работе с жесткой или жестковатой водой, есть самое главное негативное свойство - образование накипного налета на поверхностях. И никто бы на этот налет не обратил внимания (кроме естественно эстетической составляющей), если бы известь не обладала изоляционными свойствами. При отложении на теплогрейные поверхности, она начинает работать, как изолятор.

Все тепло, которое подается в систему передается в воду в размере, не превышающем процентов 15, а то и меньше. Остальные проценты остаются внутри материала, который продолжают накалять дальше. Вот и получается, что жесткость ведет к взрывам и трещинам даже самых крепких поверхностей. И залатать такие повреждения нельзя. Покупать же новое оборудование не всегда есть возможность, сразу после поломки.

Конечно, до изобретения магнитных умягчителей воды предотвращали образование накипи профилактическими промывками, пытались убирать накипь еще на стадии легкого налета, но большого эффекта от таких промывок не было.

После того, как в 20 веке открыли чудодейственную силу влияния магнитного поля на воду, был изобретен первый безреагентный магнитный умягчитель. Но в процессе его эксплуатации были выделены недостатки, которые и заставили человечество задуматься и создать модифицированную версию с применением электрических импульсов.

Основой работы магнитного, как и электромагнитного преобразователя является мощнейшее поле, создаваемое силовыми линиями. Проходя через него соли жесткости, которые обладают удобной для прилипания прямоугольной формой, начинают ее менять на форму иголки. В таком виде прилипать к поверхностям сложно, а вот разрыхлять остатки предыдущих отложений очень удобно. И поскольку ион - иголка, то разрыхление происходит на ионном уровне. Это очень тонкая и тщательная очистка поверхностей оборудования от старых залежей, без использования каких-либо дополнительных средств.

Но в процессе эксплуатации выяснилось, что создаваемое поле, даже самым мощным и громоздким постоянным магнитом оказывается слабоватым для внешних воздействий. Горячая вода заставляла прибор останавливаться. Если вода стояла внутри труб, то поле снова не работало. Скорость, направления все стало иметь значение. Но как только поле многократно усиливалось частотными электрическими волнами, как практически весь негатив от работы магнита устранялся. Что и заставило в дальнейшем делать упор на массовое производство все же электромагнитов.

Говорить о том, какой прибор лучше, не совсем корректно. Всегда должны учитываться исходные данные. Но при прочих равных, электромагнитная обработка будет однозначно выгоднее и удобнее. Тем более она сильнее, лучше работает, легче и стоит немного больше. Но при этом есть определенные ситуации в жизни, когда покупать электромагнит нет смысла. Например, в квартире стоит колонка, зачем на всю холодную воду монтировать более дорогой прибор? Здесь и магнитного прибора вполне хватит. Тем более, что сегодня за счет утяжеления устройства стараются сделать его менее восприимчивым, в том числе и к температурам. И небезуспешно. Некоторые экземпляры магнитных преобразователей воды выдерживают температуру за 120 градусов! Та, что главное найти место, где прибор можно врезать. Только следует не забывать, что прибор довольно увесист, а значит, труба не должна провисать, иначе быстро сломается.