ТФС П. К

Министерство высшего профессионального образования РФ

Российский Государственный Гуманитарный Университет

Институт Психологии

Сорокин Александр Алексеевич

I курс, 1 группа.

Реферат

“Основные понятия в теории функциональных систем”.

Москва,

1999 год.

Что есть функциональная система ?

В данной работе я должен по возможности ясно и коротко описать основные понятия теории П.К. Анохина о функциональных системах, как принципах жизнедеятельности. Поэтому прежде чем разбирать составляющие системы, надо осветить что есть она сама и для чего она функционирует.

Основные физиологические закономерности таких систем были сформулированы лабораторией Анохина ещё в 1935 году, т.е. задолго до того, как были опубликованы первые работы по кибернетике, однако смысл публикаций соответствовал тем принципам, которые Анохин выделил позже. По своей архитектуре функциональные системы целиком соответствуют любой кибернетической модели с обратной связью, и потому изучение свойств различных функциональных систем организма, сопоставление роли в них частных и общих закономерностей, несомненно, послужит познанию любых систем с автоматической регуляцией.

Под функциональной системой мы понимаем такое сочетание процессов и механизмов, которое формируясь динамически в зависимости от данной ситуации, непременно приводя к конечному приспособительному эффекту, полезному для организма как раз именно в этой ситуации . То есть в приведённой формулировке до нас хотят донести, что функциональная система может быть составлена из таких аппаратов и механизмов, которые могут быть весьма отдалёнными в анатомическом отношении. Получается, что состав функциональной системы (далее ФС) и направление её деятельности определяются не органом, ни анатомической близостью компонентов а динамикой объединения, диктуемой только качеством конечного приспособленного эффекта.

В некоторых случаях формирование саморегулирующихся систем получило название “биологического регулирования ( Wagner, 1958) , но только когда саморегуляция рассматривалась в отношении живых существ. Однако независимо от наименования, для того, чтобы приобрести приспособленный смысл для организма, эти различные формы объединения во всех случаях должны обладать всеми теми свойствами, которые мы формулируем для ФС. Получается, что ФС не относится только к коре головного мозга или даже к целому головному мозгу. Она есть по самой своей сути центрально - периферическое образование, в котором импульсы циркулируют как от центра к периферии, так и от периферии к центру (обратная афферентация ), что создаёт непрерывную информацию центральной нервной системы о достигнутых на периферии результатах.

Необходимо так же охарактеризовать основу или “жизненный узел” всякой ФС – чрезвычайно прочно увязанную функциональную пару – конечный эффект системы и аппарат оценки достаточности или недостаточности этого эффекта при помощи специальных рецепторных образований. Как правило, конечный приспособительный эффект служит основным задачам выживания организма и в той или иной степени жизненно необходим. Это положение абсолютно верно, когда речь идёт о жизненно важных функциях, как то: дыхание, осмотическое давление крови, уровень кровяного давления, концентрация сахара в крови и др. Здесь ФС представляет собой разветвлённую физиологическую организацию, составляющую конкретный физиологический аппарат , служащий поддержанию жизненно важных констант организма (гомеостазис) т.е. осуществление процесса саморегуляции. Когда речь идёт о ФС, то это относится не только к системам с константными конечными, которые располагают большею частью врождёнными механизмами.

Основное отличие в построении и организации данного вида системы, формирование её экстремально или на основе условного рефлекса. Однако, несмотря на столь разные качественные различия, все ФС имеют те же архитектурные особенности, а доказательство этого то, что “ФС действительно является универсальным принципом организации процессов и механизмов, заканчивающихся получением конечного приспособительного эффекта ”. Общепринято ФС рассматривается как единица интегративной деятельности человека.

С помощью экспериментов П.К. Анохин сформулировал основные постулаты в общей теории ФС.

Постулат первый

Ведущим системообразующим фактором ФС любого уровня организации является полезный для жизнедеятельности организма, приспособительный результат.

Постулат второй

Любая функциональная система организма строится на основе принципа саморегуляции: отклонение результата от уровня, обеспечивающего нормальную жизнедеятельность, посредством деятельности соответствующей функциональной системы само является причиной восстановления оптимального уровня этого результата.

Постулат третий

Функциональные системы являются центрально - периферическими образованиями, избирательно объединяющими различные органы и ткани для достижения полезных для организма приспособительных результатов.

Постулат четвёртый

Функциональные системы различного уровня характеризуются изоморфной организацией: они имеют однотипную архитектонику.

Постулат пятый

Отдельные элементы в функциональных системах взаимодействуют достижению их полезных для организма результатов.

Постулат шестой

Функциональные системы и их отдельные части избирательно созревают в процессе онтогенеза, отражая тем самым общие закономерности системогенеза.

Теперь мы знаем, что ФС – это организация активных элементов во взаимосвязи, которое направлено на достижение полезного приспособительного результата. Надо полагать, что настала пора разобрать понятия, которые включены в систему, потому что в этом и заключается основная тема.

Основные понятия в теории ФС.

По разным источникам можно по-разному выделить и основные понятия в ФС. Для начала приведём классическую схему самой системы, а затем разберём её отдельные понятия.



1) Пусковой стимул (иначе раздражение).

2) Обстановочные афферентации.

3) Память.

4) Доминирующая мотивация.

5) Афферентный синтез.

6) Принятие решения.

7) Акцептор результата действия.

8) Программа действия.

9) Эфферентные возбуждения.

10) Действие.

11) Результат действия.

12) Параметры результата

13) Обратная афферентация.

Если мною ничего не забыто, то именно в такой компоновке и работает система. Только во многих работах даже не встречается упоминание о таких частях системы как: установочная афферентация, пусковой стимул. Это заменено одной единственной фразой – афферентный синтез. Он составляет начальную стадию поведенческого акта любой степени сложности, а следовательно и начало работы ФС составляет он же. Важность же афферентного синтеза состоит в том, что он определяет всё последующее поведение организма. Основная задача этой стадии состоит в том, чтобы собрать необходимую информацию о различных параметрах внешней среды. Благодаря ему из множества внешних и внутренних раздражителей организм отбирает главные и создаёт цель поведения (надо полагать здесь параллельно действует механизм доминирующей мотивации) . Считаю, что доминирующая мотивация – это действия в данный момент, направленные на решение, удовлетворение какой-либо нужды, необходимости, желания, которые преобладают над всеми другими побуждениями. Поскольку на выбор такой информации оказывает влияние как цель поведения, так и предыдущий опыт жизнедеятельности, то афферентный синтез всегда индивидуален. Я уже упомянул, что стадия афферентного синтеза включает в себя не один компонент. Согласно данным установочной афферентации и при содействии доминирующей мотивации, базируясь на опыте заложенном в памяти, формируется решение о том что делать. Происходит это в блоке принятия решения. Если к этому блоку доходят сразу несколько пусковых стимулов, то должно сформироваться решение о доминирующем направлении действий (но иногда и о доминирующих, т.е. нескольких) и запуске его в программу выполнения, остальные же должны отсеится и распасться как более не функциональные. Происходит переход к формированию программы действий, которая обеспечивает последующую реализацию одного действия из множества потенциально возможных. Копия выбранного решения передаётся в блок акцептора результата действий, а основная информация поступает в блок эфферентного синтеза. Команда, представленная комплексом эфферентных возбуждений, направляется к периферическим исполнительным органам и воплощается в соответствующее действие. В этом блоке уже содержится некий набор стандартных программ, отработанных в ходе индивидуального и видового опыта для получения положительных результатов. Задача блока на данный момент определить и “подключить” наиболее адекватную программу. Важной чертой ФС являются её индивидуальные и меняющиеся требования к афферентации. Именно количество и качество афферентных импульсаций характеризует степень сложности, произвольности или автоматизированности функциональной системы.

Задачи намеченные к выполнению в блоке принятия решения и запущенные в осуществление и следует называть программой. Чего ради создаётся программа? Ответ уже был дан выше, для того же ради чего существует система – для достижения конечной цели. Это практическая часть системы в отличие от стратегического афферентного синтеза. Но программа по каким-либо внешним воздействиям может не выполнить поставленной цели. Что же из-за этого разрушать всю систему и формировать новую? Это бы было не функционально, обеспечивало бы плохую приспособляемость и требывало бы больше времени. Система не действует по такому пути, уже при исполнении программы в работу вступает акцептор полученного результата. В нём всегда хранится копия полученного ранее решения. Он является необходимой частью ФС – это центральный аппарат оценки результатов и параметров ещё не совершившегося действия. Допустим что должно быть осуществлено некое поведенческое действие, а уже до его осуществления смоделировано представление о нём или образ ожидаемого результата. В процессе реального действия от акцептора идут эфферентные сигналы к нервным моторным структурам, обеспечивающим достижение необходимой цели. Если допустить что из-за каких-то воздействий установочной афферентации поставлена под угрозу жизнь всей системы, то акцептор корректирует программу прямо по ходу её выполнения, причём адекватно с изменениями. А об успешности \ неуспешности поведенческого акта сигнализирует поступающая в мозг афферентная импульсация от всех рецепторов, которые регистрируют последовательные этапы выполнения конкретного действия (обратная афферентация). Оценка поведенческого акта как в целом, так и в деталях невозможна без такой точной информации о результатах каждого из действий. Чтобы гарантировать реализацию любого поведенческого акта необходимо наличие именно этого механизма. Более того, скорее всего организм погиб бы в первые же часы из-за неадекватности действий, если бы подобного механизма не существовало.

Наиболее совершенная модель структуры поведения изложена в концепции функциональных систем Петра Кузьмича Анохина (1898-1974).

Изучая физиологическую структуру поведенческого акта, П.К. Анохин пришел к выводу о необходимости различать частные механизмы интеграции, когда эти частные механизмы вступают между собой в сложное координированное взаимодействие. Они объединяются, интегрируются в систему более высокого порядка, в целостную архитектуру приспособительного, поведенческого акта. Этот принцип интегрирования частных механизмов был им назван принципом «функциональной системы ».

Определяя функциональную систему как динамическую, саморегулирующуюся организацию, избирательно объединяющую структуры и процессы на основе нервных и гуморальных механизмов регуляции для достижения полезных системе и организму в целом приспособительных результатов, П.К. Анохин распространил содержание этого понятия на структуру любого целенаправленного поведения. С этих позиций может быть рассмотрена и структура отдельного двигательного акта.

Функциональная система имеет разветвленный морфофизиологический аппарат, обеспечивающий за счет присущих ей закономерностей как эффект гомеостаза, так и саморегуляции. Выделяют два типа функциональных систем. 1. Функциональные системы первого типа обеспечивают постоянство определенных констант внутренней среды за счет системы саморегуляции, звенья которой не выходят за пределы самого организма. Примером может служить функциональная система поддержания постоянства кровяного давления, температуры тела и т.п. Такая система с помощью разнообразных механизмов автоматически компенсирует возникающие сдвиги во внутренней среде. 2. Функциональные системы второго типа используют внешнее звено саморегуляции. Они обеспечивают приспособительный эффект благодаря выходу за пределы организма через связь с внешним миром, через изменения поведения. Именно функциональные системы второго типа лежат в основе различных поведенческих актов, различных типов поведения.

Центральная архитектоника функциональных систем , определяющих целенаправленные поведенческие акты различной степени сложности, складывается из следующих последовательно сменяющих друг друга стадий: -> афферентный синтез, -> принятие решения, -> акцептор результатов действия, -> эфферентный синтез, -> формирование действия, и, наконец, -> оценка достигнутого результата/

АФФЕРЕНТНЫЙ (от лат. afferens - приносящий), несущий к органу или в него (напр., афферентная артерия); передающий импульсы от рабочих органов (желез, мышц) к нервному центру (афферентные, или центростремительные, нервные волокна). ЭФФЕРЕНТНЫЙ (от лат. efferens - выносящий), выносящий, выводящий, передающий импульсы от нервных центров к рабочим органам, напр. эфферентные, или центробежные, нервные волокна. АКЦЕПТОР (от лат. acceptor - принимающий).

Поведенческий акт любой степени сложности начинается со стадии афферентного синтеза. Возбуждение, вызванное внешним стимулом, действует не изолированно. Оно непременно вступает во взаимодействие с другими афферентными возбуждениями, имеющими иной функциональный смысл. Головной мозг непрерывно обрабатывает все сигналы, поступающие по многочисленным сенсорным каналам. И только в результате синтеза этих афферентных возбуждений создаются условия для реализации определенного целенаправленного поведения. Содержание афферентного синтеза определяется влиянием нескольких факторов: мотивационного возбуждения, памяти, обстановочной и пусковой афферентации.

Мотивационное возбуждение появляется в центральной нервной системе в следствии той или другой витальной, социальной или идеальной потребности. Специфика мотивационного возбуждения определяется особенностями, типом вызвавшей его потребности. Оно – необходимый компонент любого поведения. Важность мотивационного возбуждения для афферентного синтеза вытекает уже из того, что условный сигнал теряет способность вызывать ранее выработанное пищедобывательное поведение (например, побежку собаки к кормушке для получения пищи), если животное уже хорошо накормлено и, следовательно, у него отсутствует мотивационное пищевое возбуждение.

Роль мотивационного возбуждения в формировании афферентного синтеза определяется тем, что любая поступающая информация соотносится с доминирующим в данный момент мотивационным возбуждением, которое действует как фильтр, отбирающий наиболее нужное для данной мотивационной установки. Доминирующая мотивация как первичный системообразующий фактор определяет все последующие этапы мозговой деятельности по формированию поведенческих программ. Специфика мотиваций определяет характер и «химический статус» внутрицентральной интеграции и набор вовлекаемых мозговых аппаратов. В качестве полезного результата определенного поведенческого акта выступает удовлетворение потребности, т.е. снижение уровня мотивации.

Нейрофизиологической основой мотивационного возбуждения является избирательная активация различных нервных структур, создаваемая прежде всего лимбической и ретикулярной системами мозга. На уровне коры мотивационное возбуждение представлено специфическим паттерном возбуждения.

Условные и безусловные раздражители, ключевые стимулы (вид ястреба – хищника для птиц, вызывающего поведение бегства, и др.) служат толчком к развертыванию определенного поведения или отдельного поведенческого акта. Этим стимулам присуща пусковая функция. Картина возбуждения, создаваемая биологически значимыми стимулами в сенсорных системах, и есть пусковая афферентация. Однако способность пусковых стимулов инициировать поведение не является абсолютной. Она зависит от той обстановки и условий, в которых они действуют.

Влияние обстановочной афферентации на условный рефлекс наиболее отчетливо выступило при изучении явления динамического стереотипа. В этих опытах животное тренировали для выполнения в определенном порядке серии различных условных рефлексов. После длительной тренировки оказалось, что любой случайный условный раздражитель может воспроизвести все специфические эффекты, характерные для каждого раздражителя в системе двигательного стереотипа. Для этого лишь необходимо, чтобы он следовал в заученной временной последовательности. Таким образом, решающее значение при вызове условных рефлексов в системе динамического стереотипа приобретает порядок их выполнения. Следовательно, обстановочная афферентация включает не только возбуждение от стационарной обстановки, но и ту последовательность афферентных возбуждений, которая ассоциируется с этой обстановкой. Обстановочная афферентация создает скрытое возбуждение, которое может быть выявлено, как только подействует пусковой раздражитель. Физиологический смысл пусковой афферентации состоит в том, что, выявляя скрытое возбуждение, создаваемое обстановочной афферентацией, она приурочивает его к определенным моментам времени, наиболее целесообразным с точки зрения самого поведения.

Решающее влияние обстановочной афферентации на условнорефлекторный ответ было показано в опытах И.И. Лаптева – сотрудника П.К. Анохина. В его экспериментах звонок утром подкреплялся едой, и тот же звонок вечером сопровождался ударом электрического тока. В результате было выработано два разных условных рефлекса: утром – слюноотделительная реакция, вечером - оборонительный рефлекс. Животное научилось дифференцировать два комплекса раздражителей, различающихся только временным компонентом.

Афферентный синтез включает также использование аппарата памяти. Очевидно, что функциональная роль пусковых и обстановочных раздражений в известной мере уже обусловлена прошлым опытом животного. Это и видовая память, и индивидуальная, приобретенная в результате обучения. На стадии афферентного синтеза из памяти извлекаются и используются именно те фрагменты прошлого опыта, которые полезны, нужны для будущего поведения.

Таким образом, на основе взаимодействия мотивационного, обстановочного возбуждения и механизмов памяти формируется так называемая интеграция или готовность к определенному поведению. Но, чтобы она трансформировалась в целенаправленное поведение, необходимо воздействие со стороны пусковых раздражителей. Пусковая афферентация – последний компонент афферентного синтеза.

Процессы афферентного синтеза, охватывающие мотивационное возбуждение, пусковую и обстановочную афферентацию, аппарат памяти, реализуются с помощью специального модуляционного механизма, обеспечивающего необходимый для этого тонус коры больших полушарий и других структур мозга. Этот механизм регулирует и распределяет активирующие и инактивирующие влияния, исходящие из лимбической и ретикулярной систем мозга. Поведенческим выражением роста уровня активации в центральной нервной системе, создаваемым этим механизмом, является появление ориентировочно-исследовательских реакций и поисковой активности животного.

Завершение стадии афферентного синтеза сопровождается переходом в стадию принятия решения, которая и определяет тип и направленность поведения. Стадия принятия решения реализуется через специальную и очень важную стадию поведенческого акта – формирование аппарата акцептора результатов действия. Это аппарат, программирующий результаты будущих событий. В нем актуализирована врожденная и индивидуальная память животного и человека в отношении свойств внешних объектов, способных удовлетворить возникшую потребность, а также способов действия, направленных на достижение или избегание целевого объекта. Нередко в этом аппарате запрограммирован весь путь поиска во внешней среде соответствующих раздражителей.

Предполагается, что акцептор результатов действия представлен сетью вставочных нейронов, охваченных кольцевым взаимодействием. Возбуждение, попав в эту сеть, длительное время продолжает в ней циркулировать. Благодаря этому механизму и достигается продолжительное удержание цели как основного регулятора поведения.

До того как целенаправленное поведение начнет осуществляться, развивается еще одна стадия поведенческого акта – стадия программы действия или эфферентного синтеза . На этой стадии осуществляется интеграция соматических и вегетативных возбуждений в целостный поведенческий акт. Эта стадия характеризуется тем, что действие уже сформировано, но внешне оно еще не реализуется.

Следующая стадия – это само выполнение программы поведения . Эфферентное возбуждение достигает исполнительных механизмов, и действие осуществляется.

Благодаря аппарату акцептора результатов действия, в котором программируется цель и способы поведения, организм имеет возможность сравнивать их с поступающей афферентной информацией о результатах и параметрах совершаемого действия, т.е. с обратной афферентацией. Именно результаты сравнения определяют последующее построение поведения, либо оно корректируется, либо оно прекращается как в случае достижения конечного результата.

Следовательно, если сигнализация о совершенном действии полностью соответствует заготовленной информации, содержащейся в акцепторе действия, то поисковое поведение завершается. Соответствующая потребность удовлетворяется. И животное успокаивается. В случае, когда результаты действия не совпадают с акцептором действия и возникает их рассогласование, появляется ориентировочно-исследовательская деятельность. В результате этого заново перестраивается афферентный синтез, принимается новое решение, создается новый акцептор результатов действия и строится новая программа действий. Это происходит до тех пор, пока результаты поведения не станут соответствовать свойствам нового акцептора действия. И тогда поведенческий акт завершается последней санкционирующей стадией – удовлетворением потребности.

Таким образом, в концепции функциональной системы наиболее важным ключевым этапом, определяющим развитие поведения, является выделение цели поведения . Она представлена аппаратом акцептора результатов действия, который содержит два типа образов, регулирующих поведение, - сами цели и способы их достижения. Выделение цели связывается с операцией принятия решения как заключительного этапа афферентного синтеза.

П. К. Анохин (1898 - 1974) сформулировал оригинальную теорию функциональных систем, которая, по существу, явилась основой новой интегративной физиологии, медицины и психологии.

Функциональная система - это самоорганизующаяся и саморегулирующаясяся, динамическая центрально - периферические организация,в которой взаимодействие всех ее составляющих частей направлено на получение определенного и полезого для организма в целом приспособительного результата.

Типы функциональных систем:

  • 1) ФС первого типа: обеспечивают гомеостаз за счет системы саморегуляции, звенья которой не выходят за пределы самого организма (например, система постоянства кровяного давления, температуры тела и т.д).
  • 2) ФС второго типа: используют внешнее звено регуляции. Лежат в основе разных типов поведения.

Физиологическая структура поведенческого акта строится из последовательно сменяющих друг друга стадий:

  • -- афферентный синтез всей поступающей в нервную систему информации (из множества внешних и внутренних раздражителей организм отбирает главные и создает цель поведения. Всегда индивидуален т.к. на выбор такой информации оказывает влияние как цель поведения, так и предыдущий опыт жизнедеятельности. На стадии АС происходит взаимодействие трех компонентов: мотивационного возбуждения, обстановочной афферентации (т.е. информации о внешней среде) и извлекаемых из памяти следов прошлого опыта.
  • -- принятие решения о том, "что делать"
  • -- акцептор результатов действия-центральный аппарат оценки результатов и параметров еще не совершившегося действия. Т.е, еще до осуществления какого-либо поведенческого акта у живого организма уже имеется представление о нем, своеобразная модель или образ ожидаемого результата.
  • -- эфферентный синтез (программы действия) обеспечивает выбор и последующую реализацию одного действия из множества потенциально возможных
  • -- собственно действие; Команда, представленная комплексом эфферентных возбуждений, направляется к периферическим исполнительным органам и воплощается в соответствующее действие.
  • -- оценка достигнутого результата (сличение на основе обратной связи афферентной модели акцептора результатов действия и параметров выполненного действия)
  • -- коррекция поведения в случае рассогласования реальных и идеальных (смоделированных НС) параметров действия.

Важной чертой ФС являются ее индивидуальные и меняющиеся требования к афферентации. Именно количество и качество афферентных импульсаций характеризует степень сложности, произвольности или автоматизированности функциональной системы.

Каждая ФС обладает способностью к саморегуляции, которая присуща ей как целому. При возможном дефекте ФС происходит быстрая перестройка составляющих ее компонентов, так, чтобы необходимый результат, пусть даже менее эффективно (как по времени, так и по энергетическим затратам), но все же был бы достигнут.

Целостный организм в каждый данный момент времени представляет собой слаженное взаимодействие, интеграцию (по горизонтали и вертикали) различных функциональных систем с использованием принципов иерархии, многосвязного одновременного и последовательного их взаимодействия, что определяет нормальное течение метаболических процессов и поведения.

Физико-химические процессы, разыгрывающиеся в нейронах акцептора результата действия под влиянием доминирующей мотивации, порождают информационный процесс опережающего возбуждения - предвидения свойств потребных результатов и способов их достижения. Таким образом, материальная потребность трансформируется в идеальный информационный процесс. Различные результаты деятельности человека имеют эмоциональную и словесную значимость. Из этого следует, что операциональная архитектоника психических процессов у человека определяется информационно эмоциональными и словесными эквивалентами.

Теория функциональных систем в построении психической деятельности исходит из оценки результата, который определяет информационное наполнение соответствующей функциональной системы психического уровня.

В учебнике освещена современная концепция и теоретико-методологические основы медицинской экологии – важнейшего быстро развивающегося раздела экологии человека. Приводится медико-экологическая характеристика атмосферы, гидросферы, литосферы. Дается классификация основных экологических факторов риска окружающей среды. Рассматриваются основные медико-экологические проблемы взаимодействия человека с многофакторной средой его обитания, закономерности ответной реакции организма на внешние средовые воздействия.

Учебник предназначен для студентов медицинских вузов.

Книга:

…организм без внешней среды, поддерживающей его существование, невозможен.

И. М. Сеченов

Условием развития живых организмов является их взаимодействие с окружающей средой. Открытые системы рассматриваются как системы, которые могут обмениваться с окружающими телами энергией, веществом и информацией. Открытая система всегда динамическая: в ней непрерывно происходят изменения, и, естественно, она сама подвержена изменениям. Благодаря сложности данных систем в них возможны процессы самоорганизации, которые служат началом возникновения качественно новых и более сложных структур в ее развитии.

Онтогенез человеческого организма есть непрекращающийся процесс постоянного движения, направленный на поддержание количественно-качественных особенностей в организме человека. Причем для дальнейшего самообновления и поддержания динамического равновесия организма нужны дополнительные вещества, энергия и информация, получить которые он может лишь при взаимодействии с внешней средой. Исследуя организм как открытую систему, необходимо целостное его рассмотрение, установление взаимодействия составных частей или элементов в совокупности.

В медицине исторически под влиянием естественных наук, а главное – анатомических исследований, несмотря на провозглашенный (начиная с основополагающих работ С. Г. Зыбелина, М. Я. Мудрова, Е. О. Мухина, И. М. Сеченова, И. П. Павлова и др.) принцип целостности организма, сложилось органное мышление.

Любой современный учебник по важнейшим фундаментальным дисциплинам, таким, например, как анатомия, физиология, гистология и другие, строится по органному принципу. Органная патология – это , легких, печени, желудочно-кишечного тракта, почек, мозга и т. д. разделились по органным специальностям. Патогенез, диагностика и лечение непосредственно связываются с функцией конкретных органов, и профессиональный взгляд врача, как правило, в основном направлен в сторону больных органов (Судаков К. В., 1999).

П. К. Анохин сформулировал новый подход к пониманию функций целого организма. Взамен классической физиологии органов, традиционно следующей анатомическим принципам, теория функциональных систем провозглашает системную организацию функций человека от молекулярного вплоть до социального уровня.

Функциональные системы (по: Анохин П. К.) – самоорганизующиеся и саморегулирующиеся динамические центрально-периферические организации, объединенные нервными и гуморальными регуляциями, все составные компоненты которых содействуют обеспечению различных полезных для самих функциональных систем и для организма в целом адаптивных результатов, удовлетворяющих его потребности.

Теория функциональных систем, таким образом, радикально изменяет сложившиеся представления о строении организма человека и его функциях. Взамен представлений о человеке как наборе органов, связанных нервной и гуморальной регуляцией, данная теория рассматривает организм человека как совокупность множества взаимодействующих функциональных систем различного уровня организации, каждая из которых, избирательно объединяя различные органы и ткани, так же как и предметы окружающей действительности, обеспечивает достижение полезных для организма приспособительных результатов, обусловливающих в конечном счете устойчивость метаболических процессов.

С этих же позиций адаптация человека определяется как способность его функциональных систем обеспечивать достижение значимых результатов.

Анализ механизмов саморегуляции жизненно важных констант организма (кровяное давление, напряжение углекислого газа и кислорода в артериальной крови, температура внутренней среды, осмотическое давление плазмы крови, стабилизация центра тяжести в площади опоры и т. д.) показывает, что аппаратом саморегуляции выступает функциональная).

«Все функциональные системы, независимо от уровня своей организации и от количества составляющих их компонентов, имеют принципиально одну и ту же функциональную архитектуру, в которой результат является доминирующим фактором, стабилизирующим организацию систем» (Анохин П. К., 1971).


Рис. 1. Схема саморегуляторных механизмов функциональной системы (по: Анохин П. К.):

1 - пусковой стимул (раздражение); 2 – обстановочные афферентации; 3 – память; 4 - доминирующая мотивация; 5 - афферентный синтез; 6 - принятие решения; 7 - акцептор результата действия; 8 – программа действия; 9 - эфферентные возбуждения; 10 – действие; 11 - результат действия; 12 - параметры результата; 13 – обратная афферентация

К узловым механизмам, лежащим в основе структуры поведенческого акта любой степени сложности, относятся: афферентный синтез; стадия принятия решения; формирование акцептора результата действия; формирование самого действия (эфферентный синтез); многокомпонентное действие; достижение результата; обратная афферентация о параметрах достигнутого результата и сопоставление его с ранее сформировавшейся моделью результата в акцепторе результата действия (рис. 1).

Одни функциональные системы своей саморегуляторной деятельностью определяют устойчивость различных показателей внутренней среды – гомеостаз, другие – адаптацию живых организмов к среде обитания.

В ходе фило– и онтогенеза функциональные системы постоянно совершенствовались. Причем старые системы не устранялись новыми и усовершенствованными системами и механизмами управления; эволюционно ранние механизмы адаптации сохранялись и входили в определенные взаимодействия как с более древними, так и с более новыми механизмами.

Теория функциональных систем (Анохин П. К., Судаков К. В.) выделяет четыре типа систем: морфофункциональные, гомеостатические, нейродинамические, психофизиологические.

Морфофункциональные системы связаны с деятельностью определенных функций. К ним относятся опорно-двигательный аппарат, сердечно-сосудистая, дыхательная, эндокринная, нервная системы, клетки, органоиды, молекулы. Словом, все, что выполняет какую-либо функцию.

Гомеостатические функциональные системы включают подкорковые образования, вегетативную нервную и другие системы организма. Основная роль этой системы заключается в поддержании постоянства внутренней среды организма. Гомеостатические системы тесно взаимодействуют с морфофункциональными, которые вписываются в них отдельными элементами.

Нейродинамические системы в качестве ведущего структурного элемента имеют кору головного мозга, а именно первую сигнальную систему. В рамках этой системы формируется аппарат эмоций как механизм оптимизации функций организма и поведения в условиях взаимодействия организма и окружающей среды. Развитие коры резко расширило адаптивные возможности организма, подчиняя себе вегетативные функции. Нейродинамические системы включают в себя элементы гомеостатической и морфофункциональной систем.

Психофизиологические функциональные системы , как и нейродинамические, ведущим структурным элементом имеют кору головного мозга, однако те ее отделы, которые связаны со второй сигнальной системой. Вторая сигнальная система усовершенствовала механизмы адаптивного поведения за счет формирования социальных форм адаптации. Психофизиологические функциональные системы реализуют свою деятельность через вегетативную нервную систему и посредством эмоций, морфологической основой которых являются подкорковые образования (лимбическая система, таламус, гипоталамус и другие). Они включают в себя элементы структурной архитектоники нейродинамических, гомеостатических и морфофункциональных систем.

Компенсация может осуществляться одной системой, по отношению к которой данный фактор наиболее специфичен. Если возможности специфической системы оказываются ограниченными, подключаются другие системы.

Одни функциональные системы генетически детерминированы, другие складываются в индивидуальной жизни в процессе взаимодействия организма с разнообразными факторами внутренней и внешней среды, т. е. на основе обучения. Естественно, что наиболее сложные и совершенные функциональные системы имеются у людей, как наиболее совершенных живых существ. Понять их взаимодействия можно с учетом представлений о структурных уровнях организации биосистем.

Уровни организации функциональных систем (Судаков К. В., 1999): метаболический, гомеостатический, поведенческий, психический, социальный.

На метаболическом уровне функциональные системы обусловливают достижение завершающих этапов химических реакций в тканях организма. При появлении определенных продуктов химические реакции по принципу саморегуляции прекращаются или, наоборот, активируются. Типичным примером функциональной системы метаболического уровня является процесс ретроингибирования.

На гомеостатическом уровне многочисленные функциональные системы, объединяющие нервные и гуморальные механизмы, по принципу саморегуляции обеспечивают оптимальный уровень важнейших показателей внутренней среды организма, таких как масса крови, кровяное давление, температура, рН, осмотическое давление, уровень газов, питательных веществ и т. д.

На поведенческом биологическом уровне функциональные системы определяют достижение человеком биологически важных результатов – специальных факторов внешней среды, удовлетворяющих его ведущие метаболические потребности в воде, питательных веществах, защите от разнообразных повреждающих воздействий и в удалении из организма вредных продуктов жизнедеятельности; половую активность и т. д.

Функциональные системы психической деятельности человека строятся на информационной основе идеального отражения человеком его различных эмоциональных состояний и свойств предметов окружающего мира с помощью языковых символов и процессов мышления. Результаты функциональных систем психической деятельности представлены отражением в сознании человека его субъективных переживаний, важнейших понятий, абстрактных представлений о внешних предметах и их отношений, инструкций, знаний и т. д.

На социальном уровне многообразные функциональные системы определяют достижение отдельными людьми или их группами социально значимых результатов в учебной и производственной деятельности, в создании общественного продукта, в охране окружающей среды, в мероприятиях по защите Отечества, в духовной деятельности, в общении с предметами культуры, искусства и т. д. (Анохин П. К., Судаков К. В.).

Взаимодействие функциональных систем в организме осуществляется на основе принципов иерархического доминирования, мультипараметрического и последовательного взаимодействия, системогенеза и системного квантования процессов жизнедеятельности.

Иерархическое доминирование функциональных систем . Всегда один из параметров общей потребности организма выступает в роли ведущего, доминирующего, будучи наиболее значимым для выживания, продления рода или для адаптации человека во внешней и прежде всего социальной среде, формируя доминирующую функциональную систему. При этом все другие функциональные системы либо затормаживаются, либо своей результативной деятельностью способствуют деятельности доминирующей системы. По отношению к каждой доминирующей функциональной системе субдоминирующие системы в соответствии с их биологической значимостью и значимостью для социальной деятельности человека, начиная от молекулярного вплоть до организменного и социально общественного уровня, выстраиваются в определенном иерархическом порядке. Иерархические взаимоотношения функциональных систем в организме строятся на основе результатов их деятельности.

Мультипараметрическое взаимодействие . Особенно отчетливо принцип мультипараметрического взаимодействия проявляется в деятельности функциональных систем гомеостатического уровня, в которых изменение одного показателя внутренней среды, представляющего результат деятельности какой-либо функциональной системы, немедленно сказывается на результатах деятельности других связанных с ним функциональных систем. Принцип мультипараметрического взаимодействия отчетливо выявляется, например, в деятельности функциональной системы, определяющей уровень газовых показателей в организме.

Последовательное взаимодействие функциональных систем. В организме человека деятельность различных функциональных систем последовательно связана друг с другом во времени, когда результат деятельности одной функциональной системы последовательно формирует другую потребность и соответствующую функциональную систему.

Принцип последовательного взаимодействия различных функциональных систем в организме человека отчетливо проявляется в континууме процессов кровообращения, пищеварения, дыхания, выделения и т. д.

Особую разновидность последовательного взаимодействия функциональных систем во времени представляют процессы системогенеза .

П. К. Анохин определил системогенез как избирательное созревание функциональных систем и их отдельных частей в процессах пре– и постнатального онтогенеза.

Континуум жизнедеятельности каждого человека на разных уровнях организации благодаря последовательному взаимодействию функциональных систем подразделяется на отдельные, дискретные «системокванты» . Каждый отдельный «системоквант» жизнедеятельности включает возникновение той или иной биологической или социальной потребности, формирование на уровне мозга доминирующей мотивации и, через достижение промежуточных и конечного результата, завершается удовлетворением потребности. При этом оценка различных параметров промежуточных и конечных результатов деятельности постоянно осуществляется с помощью обратной афферентации, поступающей от разнообразных органов чувств и рецепторов организма к аппарату предвидения потребного результата – акцептору результата действия.

По характеру организации можно выделить последовательное, иерархическое и смешанное квантование процессов жизнедеятельности (Судаков К. В., 1997).

Начиная с замечательных работ канадского биолога Л. фон Берталанфи, в биологию и медицину все шире внедряется системный подход.

Понимание функциональных особенностей построения целого организма необходимо в первую очередь для врача, занимающегося диагностикой и лечением заболевшего человека. Современная действительность настоятельно требует для решения больших теоретических и практических задач тесного объединения специалистов различного профиля.

Физиологические механизмы человека уже сейчас не могут справляться с огромными нагрузками современной производственной деятельности и условий жизни. При наличии огромного числа обратных связей от различных параметров деятельности машин практически отсутствует контроль за физиологическими функциями работающих на этих машинах людей.

Ситуацию усугубляют социально-политические преобразования во многих странах мира, включая Россию, а также экологическое неблагополучие во многих районах земного шара.

Теория функциональной системы открыла новые перспективы ранней диагностики нарушений физиологических функций человека в условиях реальной производственной деятельности, особенно в условиях напряженной работы современного производства (Судаков К. В.).

Любая болезнь, будь то соматическая или психическая, есть проявление адаптации организма (личности) в меняющихся условиях внешней и внутренней среды. Адаптация осуществляется в зависимости от целого ряда факторов, начиная от биологических, социальных и психологических особенностей заболевающего организма, кончая особенностями патогенного фактора, условиями среды, в которой происходит данное воздействие, длительностью и интенсивностью воздействия и т. д., и затрагивает многие морфофункциональные уровни, системы, организации. То есть болезнь проявляет себя как многоуровневая система (Сукиасян С. Г., 2005).

В связи с этим оценка различных показателей деятельности организма в условиях патологии должна учитывать системную интеграцию физиологических функций.

При каждом заболевании прежде всего необходимо определить: какие функциональные системы затронул патологический процесс и нарушение деятельности которых усугубляет его; деятельность каких функциональных систем имеет компенсаторную направленность (Судаков К. В.).

Стойкое повышение артериального давления, например, может быть связано с нарушениями в самых разных звеньях функциональной системы, определяющей оптимальный уровень артериального давления в организме: барорецепторного аппарата, центральных эмоциогенных и сосудодвигательных механизмов, периферической сосудистой или гормональной регуляции и т. д. Одновременно с этим изменяется деятельность других, связанных с ней функциональных систем выделения, водно-солевого баланса, поддержания температуры тела и т. д.

При хирургическом удалении того или иного органа, исходя из представлений о том, что одни и те же органы различными сторонами своего метаболизма участвуют в деятельности различных функциональных систем, прежде всего необходимо определить, какие функциональные системы и в какой степени затронула хирургическая операция, какие компенсаторные механизмы при этом продолжают обеспечивать ведущие физиологические функции организма, какие полезные приспособительные результаты деятельности организма при этом сохранены, а какие нарушены, а также какие стороны гомеостаза или поведения они затрагивают?

С системных позиций компенсация нарушенных функций всегда идет в направлении сохранения функциональными системами способности обеспечивать полезные для организма приспособительные результаты.

Как показали исследования Е. Л. Голубевой, сотрудницы П. К. Анохина, при удалении одного легкого компенсаторный процесс связан не только с деятельностью второго оставшегося легкого, но и с функциями сердца, почек, крови и других исполнительных компонентов разветвленного внутреннего звена саморегуляции функциональной системы дыхания. При этом нарушается деятельность и других функциональных систем, определяющих оптимальный для организма уровень кровяного и осмотического давления, реакции крови, выделения и т. д., которые по принципу многосвязного взаимодействия компенсаторно перестраивают свою деятельность.

Хирургическая операция, например замена протезом восходящей дуги аорты, может нарушить функции барорецепторов и хеморецепторов газового гомеостаза. В этом случае компенсаторная функция в значительной степени ложится на другие хеморецепторные зоны: синокаротидную и центральные, состояние которых в этом случае необходимо оценить еще до операции (Судаков К. В.).

Теория функциональных систем позволяет по-новому подойти к проблеме реабилитации нарушенных функций человека.

С позиций теории функциональных систем все реабилитационные мероприятия выступают в роли дополнительного внешнего звена саморегуляции, компенсируя тем самым недостаточную функцию тех или иных функциональных систем организма.

Особого внимания в этом плане заслуживает первая информационная стадия формирования патологического процесса (преморбидное состояние ).

На этой стадии нарушенные информационные внутри– и межсистемные отношения функциональных систем в организме легко восстанавливаются информационными методами реабилитации: гипнотическим воздействием, массажем , гомеопатией , акупунктурой, тепло-холодовыми процедурами, гипоксией и другими, позволяющими предупредить переход дисфункций в устойчивую патологическую форму. Исходя из того что болезнь первично проявляется как нарушение информационных системных отношений в организме, становится понятной роль культурных, семейных и производственных отношений как своеобразного «человеческого иммунитета». Эти же факторы важны и для сохранения и упрочения эффектов реабилитации (Судаков К. В., 1996).

Каждый организм имеет свою зону физиологического комфорта, в которой сохраняется максимально возможный предел компенсации функции. При стойких изменениях среды организм переходит на новый уровень гомеостаза, или «гомеорезиса» (по: Адо В. Д.), для которого оптимальными являются другие показатели гомеостаза. Это и есть состояние адаптации. Таким образом, теория функциональных систем П. К. Анохина, рассматривая организм как целостный биосоциальный объект в фило– и онтогенетическом плане, подтверждает учение об адаптационном синдроме (Судаков К. В., Сукиасян С. Г.).

Адаптация (приспособление) – это процесс поддержания функционального состояния гомеостатических систем и организма в целом, обеспечивающий его сохранение, развитие, максимальную продолжительность жизни в неадекватных условиях (Казначеев В. П., 1973).

Адаптация есть, несомненно, одно из фундаментальных качеств живой материи. Она присуща всем известным формам жизни. Выделяют следующие типы адаптации: биологическая, физиологическая, биохимическая, психологическая, социальная и т. д.

При классификации процессов адаптации следует учитывать:

1. Факторы среды (физические, химические, бактериальные, вирусные).

2. Свойства организма (эмбриональный, детский, взрослый, пол, национальность.)

3. Характер адаптационных перестроек в разных системах органов (в первую очередь – нервная, гормональная, иммунная системы, а также сердечно-сосудистая, дыхательная, пищеварительная и др.).

4. Уровень организации биосистемы (вид, популяция, организм, система, орган и др.).

По значимости для эволюции адаптационные изменения могут быть: генотипические, фенотипические.

В основе генотипической адаптации лежат стойкие изменения наследственного материала (мутации), которые могут передаваться из поколения в поколение и закрепляться действием естественного отбора, дрейфа генов.

Следствием этого типа адаптации является приобретение новых адаптивных генотипических признаков.

Под фенотипической адаптацией понимается варьирование значения признака в результате действия внешне-средовых факторов. В основе данного варьирования лежит «норма реакции», которая контролируется генетически и определяет размах варьирования признака в конкретных условиях окружающей среды.

С физиологической и патофизиологической точек зрения, понятия приспособление, норма и патология должны даваться только в целях обоснования взгляда, что нормологический и патологический процессы являются различными качественными проявлениями одного и того же процесса – приспособления или адаптации. При этом патология не всегда является адаптивной аномалией, как и адаптивной нормой.

Исходя из этого, практически все болезни являются результатом ошибок в адаптивных реакциях на внешние раздражители. С этой точки зрения большая часть болезней (нервные расстройства, гипертоническая болезнь, язвенная болезнь желудка и двенадцатиперстной кишки, некоторые типы ревматических, аллергические, сердечно-сосудистые заболевания и почечные болезни) являются болезнями адаптации, то есть патологические процессы и болезни это всего лишь особенности приспособительных реакций.

Согласно теории адаптационных реакций в зависимости от силы воздействия, в организме могут развиваться три типа адаптационных реакций:

– на слабые воздействия – реакция тренировки;

– на воздействия средней силы – реакция активации;

– на сильные, чрезвычайные воздействия – стресс-реакция (по: Селье Г.).

Реакция тренировки имеет три стадии: ориентировки, перестройки, тренированности. В ЦНС преобладает охранительное торможение. В эндокринной системе вначале умеренно повышается активность глюко– и минералокортикоидных гормонов, а затем постепенно увеличивается секреция минералокортикоидов и нормализуется секреция глюкокортикоидов на фоне умеренно повышенной функциональной активности щитовидной и половых желез.

Реакция активации имеет две стадии: первичной активации и стадию стойкой активации. В ЦНС преобладает умеренное, физиологическое возбуждение. В эндокринной системе отмечается увеличение секреции минералокортикоидов при нормальной секреции глюкокортикоидов и повышение функциональной активности щитовидной и половых желез. Повышение активности желез внутренней секреции выражено больше, чем при реакции тренировки, но не носит характера патологической гиперфункции. В обеих стадиях реакции активации повышается активная резистентность к повреждающим агентам различной природы.

Реакция тренировки и реакция активации – это те адаптационные реакции, которые встречаются в течение нормальной жизни организма. Эти реакции являются неспецифической основой физиологических процессов, так же как стресс – неспецифической основой патологических процессов.

В основе любой адаптивной реакции организма лежат определенные биохимические преобразования. Ни один вид адаптации не обходится без существенных биохимических перестроек.

Биохимическая адаптация выполняет в клетке следующие основные функции:

1. Поддержание структурной целостности макромолекул (ферментов сократительных белков, нуклеиновых кислот и др.) при их функционировании в специфических условиях.

2. Достаточное снабжение клетки:

а) энергетической валютой – АТФ;

б) восстановительными эквивалентами, необходимыми для протекания процессов биосинтеза;

в) предшественниками, используемыми при синтезе запасных веществ (гликогена, жиров и т. п.), нуклеиновых кислот и белков.

3. Поддержание систем, регулирующих скорости и направления метаболических процессов в соответствии с потребностями организма и их изменениями при изменении условий среды.

Выделяют три типа механизмов биохимической адаптации:

1. Приспособление макромолекулярных компонентов клетки или жидкостей организма:

а) изменяются количества (концентрации) уже имеющихся типов макромолекул, например ферментов;

б) образуются макромолекулы новых типов, например новые изоферменты, которыми замещаются макромолекулы, ранее имевшиеся в клетке, но ставшие не вполне пригодными для работы в изменившихся условиях.

2. Приспособление микросреды, в которой функционируют макромолекулы. Сущность этого механизма состоит в том, что адаптивное изменение структурных и функциональных свойств макромолекул достигается путем видоизменения качественного и количественного состава окружающей эти макромолекулы среды (например, ее осмотической концентрации или состава растворенных веществ).

3. Приспособление на функциональном уровне, когда изменение эффективности макромолекулярных систем, в особенности ферментов, не связано с изменением числа имеющихся в клетке макромолекул или их типов. Данный тип биохимической адаптации еще называется метаболической регуляцией. Его сущность состоит в регулировании функциональной активности макромолекул, ранее синтезированных клеткой.

При изучении влияния комплекса длительно действующих факторов среды обитания на организм человека важную задачу составляет оценка стратегии адаптации. На основе знания стратегии адаптации можно прогнозировать характер поведения организма во времени при его контакте с изменяющимися факторами окружающей среды.

Под стратегией адаптации понимают функционально-временную структуру потоков информации, энергии, веществ, обеспечивающую оптимальный уровень морфофункциональной организации биосистем в неадекватных условиях среды.

Критерием, лежащим в основе выделения различных стратегий адаптации (типов реагирования), является время выполнения субмаксимальной работы. Эта относительная величина всегда обратно пропорциональна силе противодействия организма разрушительному влиянию среды, при условии выполнения организмом работы субмаксимальной интенсивности.

Можно выделить три варианта «стратегии» адаптивного поведения организма человека.

1. Тип стратегии (стратегия типа «спринтер» ): организм обладает способностью мощных физиологических реакций с высокой степенью надежности в ответ на значительные, но кратковременные колебания во внешней среде. Однако такой высокий уровень физиологических реакций может поддерживаться относительно короткий срок. К длительным физиологическим перегрузкам со стороны внешних факторов, даже если они средней величины, такие организмы мало приспособлены.

2. Второй тип (стратегия типа «стайер» ): организм менее устойчив к кратковременным значительным колебаниям среды, но обладает свойством выдерживать длительное время физиологические нагрузки средней силы.

3. Наиболее оптимальным типом стратегии является промежуточный тип , который занимает среднее положение между указанными крайними типами.

Формирование стратегии адаптации генетически детерминировано, но в процессе индивидуальной жизни, соответствующего воспитания и тренировки их варианты могут подвергаться коррекции. Следует отметить, что у одного и того же человека разные гомеостатические системы могут иметь различные стратегии физиологической адаптации.

Установлено, что у людей с преобладанием стратегии первого типа («спринтер») одновременное сочетание работы и восстановительных процессов выражено слабо и для указанных процессов требуется более четкая ритмичность (то есть расчленение во времени).

У людей же с преобладанием стратегии 2 типа («стайер»), напротив, резервные возможности и степень быстрой мобилизации не высоки, однако рабочие процессы более легко сочетаются с процессами восстановления, что обеспечивает возможность длительной нагрузки.

Так, в условиях северных широт у людей с вариантами стратегии типа «спринтер» наблюдается быстрое истощение и нарушение липидно-энергетического обмена, что приводит к развитию хронических патологических процессов. В то же время у людей, относящихся к варианту стратегии «стайер», приспособительные реакции к специфическим условиям высоких широт наиболее адекватны и позволяют им длительное время находиться в этих условиях без развития патологических процессов.

С целью определения эффективности адаптационных процессов были разработаны определенные критерии и методы диагностики функциональных состояний организма .

Р. М. Баевским (1981) предложено учитывать пять основных критериев:

1 – уровень функционирования физиологических систем;

2 – степень напряжения регуляторных механизмов;

3 – функциональный резерв;

4 – степень компенсации;

5 – уравновешенность элементов функциональной системы.

В качестве индикатора функционального состояния целостного организма может рассматриваться система кровообращения. Рассматриваются три свойства системы кровообращения, с помощью которых можно оценить переход от одного функционального состояния к другому. Это:

уровень функционирования . Под ним следует понимать поддержание определенных значений основных показателей миокардиально-гемодинамического гомеостаза: ударный и минутный объем, частота пульса и артериальное давление;

степень напряжения регуляторных механизмов , которая определяется показателями вегетативного гомеостаза, например степенью активации симпатического отдела вегетативной нервной системы и уровнем возбуждения вазомоторного центра.

функциональный резерв . Для его оценки обычно принимают функциональные нагрузочные пробы, например ортостатическую или с физической нагрузкой.

Классификация функциональных состояний при развитии болезней адаптации (Баевский Р. М., 1980):

1. Состояние удовлетворительной адаптации к условиям окружающей среды. Для этого состояния характерны достаточные функциональные возможности организма, гомеостаз поддерживается при минимальном напряжении регуляторных систем организма. Функциональный резерв не снижен.

2. Состояние напряжения адаптационных механизмов. Функциональные возможности организма не снижены. Гомеостаз поддерживается благодаря определенному напряжению регуляторных систем. Функциональный резерв не снижен.

3. Состояние неудовлетворительной адаптации к условиям окружающей среды. Функциональные возможности организма снижены. Гомеостаз сохраняется благодаря значительному напряжению регуляторных систем либо благодаря включению компенсаторных механизмов. Функциональный резерв снижен.

4. Срыв (поломка) механизмов адаптации. Резкое снижение функциональных возможностей организма. Гомеостаз нарушен. Функциональный резерв резко снижен.

Дезадаптация и развитие патологических состояний происходит поэтапно. С позиций биокибернетики перемещение от здоровья к болезни представляет собой поэтапную смену способов управления. Каждому состоянию соответствует свой характер структурно-функциональной организации биосистемы.

Начальный этап пограничной зоны между здоровьем и патологией – это состояние функционального напряжения механизмов адаптации. Наиболее характерным его признаком является высокий уровень функционирования, который обеспечивается за счет интенсивного или длительного напряжения регуляторных систем. Состояние напряжения адаптационных механизмов, не выявляемое при традиционном клиническом обследовании, следует относить к дозонологическим, то есть предшествующим развитию заболевания.

Более поздний этап пограничной зоны – состояние неудовлетворительной адаптации. Для него характерно уменьшение уровня функционирования биосистемы, рассогласование отдельных ее элементов, развитие утомления и переутомления. Состояние неудовлетворительной адаптации является активным приспособительным процессом. Организм пытается приспособиться к чрезмерным для него условиям существования путем изменения функциональной активности отдельных систем и соответствующим напряжением регуляторных механизмов. Состояние неудовлетворенной адаптации может быть отнесено к преморбидным, поскольку значительное снижение функционального резерва позволяет при использовании функциональных проб выявить неадекватный ответ организма, указывающий на скрытую или начальную патологию.

С клинической точки зрения, только срыв адаптации относится к патологическим состояниям, ибо он сопровождается заметными изменениями традиционно измеряемых показателей: частота пульса, ударный и минутный объем, артериальное давление и т. д.

По своим проявлениям болезни адаптации носят полиморфный характер, охватывая различные системы организма. Наиболее распространены болезни адаптации при длительном пребывании людей в неблагоприятных условиях (горная болезнь и др.). Вследствие продолжительного напряжения механизмов регуляции, а также клеточных механизмов, происходит истощение и потеря наиболее важных резервов организма (Гора Е. П., 1999). Поэтому для профилактики болезней адаптации используют методы увеличения эффективности адаптации.

Методы увеличения эффективности адаптации могут быть специфическими и неспецифическими.

К неспецифическим методам относятся: активный отдых, закаливание, средние физические нагрузки, адаптогены и терапевтические дозировки разнообразных курортных факторов, которые способны повысить неспецифическую резистентность, нормализовать деятельность основных систем организма.

Адаптогены – это средства, осуществляющие фармакологическую регуляцию адаптивных процессов в организме. По своему происхождению адаптогены могут быть разделены на две группы: природные и синтетические. Источниками природных адаптогенов являются наземные и водные растения, животные и микроорганизмы. К наиболее важным адаптогенам растительного происхождения относятся женьшень, элеутерококк, лимонник китайский, аралия маньчжурская, заманиха, шиповник и т. д. К препаратам животного происхождения относятся: пантокрин, получаемый из пантов марала; рантарин – из пантов северного оленя, апилак – из пчелиного маточного молочка. Широкое применение получили вещества, выделенные из различных микроорганизмов и дрожжей (продигиоган, зимозан и др.). Высокой адаптогенной активностью обладают витамины. Многие эффективные синтетические соединения получены из природных продуктов (нефть, уголь и т. п.).

Специфические методы увеличения эффективности адаптации основаны на повышении резистентности организма к какому-либо определенному фактору среды: холоду, гипоксии и т. д. К ним относятся лекарственные средства, физиотерапевтические процедуры, специальные тренировки и т. д. (Гора Е. П., 1999).

Термин «функциональные системы», теория и модель функциональных систем были введен в 1935 году советским физиологом Петром Кузьмичом Анохиным. Предпосылкой создания ТФС являются полученные экспериментальным путем физиологические факты (такие как, например соединение нервных стволов), благодаря которым было выявлено подчинение отдельных систем (функций) целостному поведению. Дальнейшие исследования позволили Анохину обнаружить интеграцию физиологических процессов в единое целое .

Какое же определение Петр Кузьмич Анохин дает понятию "Функция"? Функция - это достижение полезного результата в соотношение организма и среды. Таким образом, функциональная система, по мнению ученого, была динамической саморегулирующейся организацией, все составные элементы которой взаимодействуют для получения организмом полезного приспособительного результата. Этот «приспособительный результат» является показателем адаптации, необходимым для нормального функционирования организма. Функциональные системы организма складываются из нескольких различных по своему строению и предназначению элементов целого организма и на их деятельности и окончательном результате не отражается исключительное влияние какого-нибудь анатомического типу участвующей структуры. Компоненты, входящие в систему теряют свою свободу, и остаются лишь те из них, которые способствуют получению желаемого полезного результата, который является определяющим фактором для формирования функциональной системы.

Полезный результат- это обеспечение какого-либо качественно специфического соотношения организма со средой, способствующего удовлетворению его потребностей.

Результаты могут подразделяться на несколько групп:

1) Метаболические. Результаты, создающие для жизнедеятельности необходимые конечные продукты.

2) Гомеопатические. Результаты, являющиеся показателями состояния жидких средств организма (крови, лимфы) и обеспечивающие нормальный обмен веществ.

3) Поведенческие. Результаты, удовлетворяющие основные потребности живого организма.

4) Социальные. Результаты, удовлетворяющие социальные и духовные потребности человека.

Для достижения результатов разных групп формируются функциональные системы разного уровня, однако их структура в принципе однотипна и представляет собой совокупность пяти элементов:

1) Полезный приспособительный результат

2) Аппараты контроля (рецепторы)

3) Обратную связь

4) Центральную архитектонику- избирательное объединение нервных элементов различных уровней в аппараты управления.

5) Аппараты реакции- соматические, вегетативные, эндокринные, поведенческие.

Функциональные системы метаболического результата включают в себя только внутренние механизмы саморегуляции, определяют оптимальный для процесса метаболизма уровень массы крови, кровяного давления и реакции среды.

Гомеопатические Функциональные системы предусматривают внешние механизмы саморегуляции, взаимодействия организма с внешней средой, уровень питательных веществ, температуру тела и давление.

Поведенческие функциональные системы и социальные функциональные системы предусматривают внутренние и внешние механизмы саморегуляции, которые играют в равной степени равную роль.

Одновременно в организме человека моет работать несколько функциональных систем разного уровня, однако существуют определенные принципы их взаимодействия:

1) Принцип системогенеза;

2) Принцип многосвязного взаимодействия;

3) Иерархичность;

4) Последовательная динамичность взаимодействия;

5) Принцип системного квантования жизнедеятельности .

Предлагаю подробнее рассмотреть эти принципы.

Первый принцип, принцип системогенеза, есть ни что иное как созревание, развитие и избирательная редукция функциональной системы.

Принцип многосвязного взаимодействия определяет обобщенную деятельность различных функциональных систем, единство внутренней среды организма, изменения в результате обмена веществ и деятельности организма во внешней среде. При этом отклонения одного показателя внутренней среды вызывают перераспределение параметров результата совместной деятельности нескольких функциональных систем.

Иерархичность. Название говорит само за себя- функциональные системы разбивается на уровни, нищие из которых подчиняются высшим, в соответствии с биологической и социальной значимостью. Деятельность организма определяется доминирующей функциональной системой и первым достигается соответствующий результат. По достижению главенствующего результата, происходит достижение следующего по значимости.

Принцип последующего динамического взаимодействия. Понимается как четкая последовательность смены деятельности нескольких функциональных систем. Результат деятельности предыдущей является показателем для начала деятельности последующей системы.

Принцип системного квантования жизнедеятельности. Заключается в выделение в процессе жизнедеятельности некоторых «квантов» с их конечным результатом.

Таким образом, «полезный результат» достигается за счет двигательного (поведенческого) акта.

Поведенческий акт-это элементарный цикл соотношения целостного организма со средой, в котором выделяются системные процессы, то есть организация клеток клеточных процессов в единое целое- функциональную систему .

Для рассмотрения этого понятия необходимо сказать, что Анохин выделил две группы функциональных систем: первая группа- функциональные системы, которые обеспечивают постоянство определенных констант внутренней среды за счет системы саморегуляции, звенья которой не выходят за пределы самого организма (функциональные системы метаболического результата) . Вторая группа- функциональные системы, которые используют внешнее звено саморегуляции. Они обеспечивают приспособительный эффект благодаря выходу за пределы организма через связь с внешним миром, через изменения поведения. Именно функциональные системы второго типа лежат в основе различных поведенческих актов, различных типов поведения.

Складывается определенная схема сочетания частей функциональных систем в единое целое, определяющих поведенческий акт:

Афферентный синтез – принятие решения – акцептор результатов действия – эффективный синтез – формирование действия – оценка достигнутого результата.

Разберем предложенную цепь.

1) Афферентный синтез – это процесс передачи импульса от рабочего органа к нервному центру. На его формирование влияют следующие факторы:

а) Мотивационное возбуждение (потребность). Появляется при возникновение какой-либо потребности и направлена на создание благоприятных условий для удовлетворения этих потребностей и существования организма.

б) Обстановочная афферентация. Включающая в себе возбуждение от стационарной обстановки и возбуждения, которая ассоциируется с этой обстановкой.

в) Пусковая афферентация. Состоит в том, что, выявляя скрытое возбуждение, создаваемое обстановочной афферентацией, она приурочивает его к определенным моментам времени, наиболее целесообразным с точки зрения самого поведения.

г) Аппарат памяти. Заключается в том, что на стадии афферентного синтеза из памяти извлекаются и используются именно те фрагменты прошлого опыта, которые полезны, нужны для будущего поведения.

2) Стадия принятия решения, которая и определяет тип и направленность поведения. Стадия принятия решения реализуется через специальную и очень важную стадию поведенческого акта – формирование аппарата акцептора результатов действия. Это аппарат, программирующий результаты будущих событий. В нем актуализирована врожденная и индивидуальная память животного и человека в отношении свойств внешних объектов, способных удовлетворить возникшую потребность, а также способов действия, направленных на достижение или избегание целевого объекта. Нередко в этом аппарате запрограммирован весь путь поиска во внешней среде соответствующих раздражителей.

3) Следующий этап акцептор результатов действия- это, можно сказать, механизм, содержащий модель программируемых параметров будущих этапных и конечных результатов, а так же производящий сравнение результатов, которые были за прогнозированы, с теми, которые были получены.

4) Эфферентный синтез - выносящий, выводящий, передающий импульсы от нервных центров к рабочим органам.

Выводы к главе 1:

1) Нервная система является основной функциональной системой живого организма, так как она способна регулировать деятельность других систем нашего организма, являясь между ними, своего рода связывающим звеном. Нервная система состоит из Центральной нервной системы (головной и спинной мозг) и Периферической нервной системы (нервы, нервные узлы), которые так же взаимодействуют друг с другом при осуществлении нервных реакций и процессов.
2) Являясь главной функцией живого организма, нервная система базой для психических процессов. Психика формируется по воздействием активности нервной системы. Это выражается в формировании субъективного образа картины окружающего мира, отличного от реального и эмоционально окрашенного, регуляции поведения человека осуществляемая как внутренними влияниями желаний, памяти, опыта, так и непосредственно внешней средой.
3) Основоположником теории функциональных систем является русский ученый Петр Кузьмич Анохин. Он дал определение, классификацию функциональных систем, принципы их работы и цель - достижение полезного результата.