Что такое гидроэлектростанция. Общее понятие о гэс

ГЭС служит для получения электрической энергии с помощью потока воды. То есть преобразовывают одну энергию в другую. ГЭС представляет собой комплекс сложных оборудований и сооружений. Одно из главных сооружений на ГЭС это плотина.

Принцип работы гидроэлектростанций

Принцип работы ГЭС не сложный. Сначала обеспечивается необходимый напор воды за счет гидротехнических сооружений и оборудования, работающих под высоким давлением ; дальше он поступает на лопасти гидротурбины, и после чего начинают работать генераторы, которые вырабатывают электроэнергию. В самом здании соответственно много различных дополнительных оборудований: распределительные устройства, гидроагрегаты, устройства управления, трансформаторы и много чего еще.

Гидроэлектростанции по вырабатываемой мощности подразделяют на три вида:

  • малой мощности - до 5 МВт;
  • средней мощности - до 25 МВт;
  • высокой мощности - от 25 МВТ до 250 МВт.

То, какую мощность вырабатывает ГЭС, в первую очередь зависит от напора воды и КПД используемого генератора.

Также есть понятие цикличная мощность, то есть в связи с природными законами и рядом других причин уровень воды меняется, и отсюда вытекают следующие циклы: суточные, недельные, месячные, годичные.

Также их можно разделить в зависимости использования максимального напора :

  • низконапорные ГЭС — от 3 до 25 метров,
  • средненапорные ГЭС — от 25 метров,
  • высоконапорные ГЭС — более 60 метров.

У всех видов турбин принцип работы схожий - вода под давлением поступает на лопасти турбины, после чего последние начинают вращаться. На гидрогенератор передается механическая энергия, после чего получают электроэнергию. Турбины различают по техническим характеристикам и их камерами.

ГЭС по принципу использования природных ресурсов

  1. Деривационные гидроэлектростанции . Такие ГЭС строятся там, где большой уклон реки.
  2. Плотинные ГЭС . Строятся они при высоких напорах воды. В таких случаях река перегораживается плотиной, а само здание ГЭС находится в нижней части за платиной.
  3. Приплотинные и русловые ГЭС . Являются самыми распространенными гидроэлектростанциями. Строятся они на многоводных равнинных реках, а также горных и в местах, где русло более сжатое, узкое.

Особенности

  • Себестоимость такой электроэнергии ниже в два раза, если сравнивать с тепловой электростанцией;
  • быстрое включение и выключение генераторов на ГЭС;
  • источник энергии считается возобновляемым;
  • требуется большие территории для водохранилища;
  • не загрязняет атмосферу.

ГЭС имеет свои плюсы и минусы

Достоинства:

  • не загрязняет почву, так как не выделяет вредных веществ,
  • источником энергии является вода, а она считается возобновляемым источником,
  • воду можно использовать во многих целях: пить, купаться,
  • водохранилище создает красивый пейзаж,
  • легко контролировать производительность ГЭС.

Недостатки:

  • занимает большую территорию,
  • служит причиной наводнений,
  • нарушается уровень воды, поэтому рядом дома не строятся,
  • уменьшение роста рыбы в искусственных водохранилищах.

Общий принцип работы гидроэлектростанции известен, наверное, всем. Вода, переходя из верхнего бьефа в нижний, вращает колесо турбины. От турбины приводится в движение генератор, который собственно и производит электричество. Но все самое интересное – в подробностях.

Кстати, для того чтобы получить 1 квт-ч электрической энергии, требуется спуск 14 тонн воды с высоты 27 м.

В отличие, например, от тепловых станций, устроенных совершенно однотипно, каждая гидроэлектростанция устроена со своими особенностями. То есть, не существует некоей однотипной ГЭС. Они отличаются по расходу и напору воды, обьему водохранилища, по географическим критериям местности: климат, грунт, рельеф, близость моря.

Вот машинный за, вполне обычный, разве что окна искусственные (с подсветкой): зал находится на глубине 76 м внутри скалы.

Это машинный зал первой в СССР подземной гидроэлектростанции, к ней с поверхности земли подведены четыре водовода, имеющие диаметр 6 м.

Для извлечения из зала оборудования при необходимости его замены или ремонта в скале вырублена шахта:

Сбросные сооружения и затворы

Не всегда и не вся вода может использоваться для выработки энергии: часть ее сбрасывается мимо ГЭС. Это бывает необходимо при паводке весной (если отсутствует водохранилище многолетнего регулирования), при ремонте агрегатов, при необходимости холостого сброса воды для пропуска мальков рыб по течению и по другим причинам. На Беломорской ГЭС холостой водосброс – это три затвора.

Вопрос резервирования очень важен, ведь если вовремя не понизить в водохранилище уровень воды, это будет иметь серьезные последствия. Для поднятия и опускания затворов предусмотрены козловые краны и электрические лебедки, есть и ручной привод.

Когда затвор поднят, происходит холостой сброс воды для Беломорского водозабора, который расположен ниже по течению.

При обледенении затвора используется индукционный подогрев: обогрев одного затвора требует 150кВт.

Для этой же цели возможно применение барботажа – пропускание воздуха вдоль затвора из глубины, с помощью шлангов системы сжатого воздуха.

Для гашения кинетической энергии воды при сбросе используются различные способы: столкновение потоков, ступени, водобойные колодцы. Например, на Волховской ГЭС – водобойная плита с гасителями.

О рыбе

Нижнетуломская ГЭС для того, чтобы семга могла подняться вверх по течению на нерест, имеет специальный рыбоход, имитирующий горный ручей. В его конструкции предусмотрены и камни на дне, и зигзагообразные проходы, и места для отдыха рыбы.

В период нереста ближайший к рыбоходу гидроагрегат отключают, чтобы его шум не мешал рыбе найти ручей и плыть в правильном направлении.

Безопасность

В результате аварийного прорыва воды ГЭС может остаться без электричества даже для собственных нужд, поэтому предусматриваются резервные источники: аккумуляторы, аварийные дизель-генераторы.

Еще один компонент системы обеспечения безопасности – аэрационные трубы, которые есть к примеру в верхней части водоводных труб Кондопожской ГЭС.

Аэрационные трубы монтируются для защиты водоводов при образовании в них глубокого вакуума, от которого их стальные стенки могут разорваться. Этот вакуум возникает в ситуации резкого опорожнения водовода после закрытия верхних затворов. По аэрационным же трубам они заполняются воздухом, что предотвращает деформацию.

Остатки водовода 1930-х годов из дерева.

Защитная стенка (в центре кадра) предусмотрена для той ситуации, если водовод все-таки прорвется.

Стенка перенаправит водный поток так, что он обойдет станцию с левой стороны, а не через здание администрации и уйдет в нижний бьеф по выемке.

Контроль и управление

На следующем фото видны турбина, генератор и вал, который их соединяет. Слева виднеется схема гидроагрегата, на которую выведены гидроманометры, которые показывают давление в системе смазки.

Внизу – гидравлические приводы направляющего аппарата.

В машинном зале можно проследить за другими параметрами: уровни воды в бьефах, температура воздуха и воды.

Мнемосхема

Данный гидроагрегат не работает. Мощность и частота вращения ротора равны нулю, закрыт направляющий аппарат.

Вода из спиральной камеры турбины снизу забирается и подается на охладители генератора (охладитель – в центре схемы, он красного цвета, охладители А и Б), а также на смазку подпятника, верхнего (ВГП) и нижнего (НГП) генераторных подшипников. Подшипники смазываются водой, нагреваемая вода отправляется на рыбзавод. Справа – красный бак с маслом – относится к гидравлической системе управления направляющим аппаратом. Также здесь можно видеть уровни и расходы и давления всех жидкостей.

Вибрация

Вибрация очень опасна: к примеру, на Саяно-Шушенской станции гидроагрегат был разрушен именно из-за нее. Точнее, из-за усталостного разрушения шпилек крепления крышки турбины по причине вибраций, которые возникли при переходе гидроагрегата через диапазон «запрещенной зоны».

На центральном пульте управления ГЭС можно увидеть, где эта «запрещенная зона» расположена.

Гидроагрегаты Г1, Г3, Г4 работают. Г2 – остановлен. На черном фоне отображается мощность, вырабатываемая генераторами 38,1/38/38 МВт соответственно. Красные столбики Г3 и Г4 свидетельствуют о работе на полную мощность, в Г1 еще имеется резерв. Красная зона за столбиками – диапазон мощности, при которой нежелательна работа гидроагрегата, при пуске и остановке ее необходимо быстро миновать.

Узнать, какой гидроагрегат не работает можно еще до входа в здание.

Когда противовесы подняты – значит, затворы на соответствующих турбинных водоводах опущены. Активно внедряется удаленное управление. При этом диспетчер должен держать под контролем и учитывать взаимное влияние ГЭС в каскаде, значения уровней воды в водохранилищах, потребности потребителей по электричеству и воде. На основании этих сведений происходит распределение выработки электроэнергии между станциями.

Гидроэлектростанция

Гидроэлектроста́нция (ГЭС) - электростанция , в качестве источника энергии использующая энергию водного потока . Гидроэлектростанции обычно строят на реках , сооружая плотины и водохранилища .

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонобразные виды рельефа.

Особенности

Принцип работы

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Крупнейшие ГЭС в мире

Наименование Мощность,
ГВт
Среднегодовая
выработка, млрд кВт·ч
Собственник География
Три ущелья 22,40 100,00 р. Янцзы , г. Сандоупин, Китай
Итайпу 14,00 100,00 Итайпу-Бинасионал р. Парана , г. Фос-ду-Игуасу , Бразилия /Парагвай
Гури 10,30 40,00 р. Карони , Венесуэла
Черчилл-Фолс 5,43 35,00 Newfoundland and Labrador Hydro р. Черчилл, Канада
Тукуруи 8,30 21,00 Eletrobrás р. Токантинс , Бразилия

Гидроэлектростанции России

По состоянию на 2009 год в России имеется 15 гидроэлектростанций свыше 1000 МВт (действующих, достраиваемых или находящихся в замороженном строительстве), и более сотни гидроэлектростанций меньшей мощности.

Крупнейшие гидроэлектростанции России

Наименование Мощность,
ГВт
Среднегодовая
выработка, млрд кВт·ч
Собственник География
Саяно-Шушенская ГЭС 2,56 (6,40) 23,50 ОАО РусГидро р. Енисей , г. Саяногорск
Красноярская ГЭС 6,00 20,40 ОАО «Красноярская ГЭС» р. Енисей , г. Дивногорск
Братская ГЭС 4,52 22,60 ОАО Иркутскэнерго , РФФИ р. Ангара , г. Братск
Усть-Илимская ГЭС 3,84 21,70 ОАО Иркутскэнерго , РФФИ р. Ангара , г. Усть-Илимск
Богучанская ГЭС 3,00 17,60 ОАО «Богучанская ГЭС», ОАО РусГидро р. Ангара , г. Кодинск
Волжская ГЭС 2,58 12,30 ОАО РусГидро р. Волга , г. Волжский
Жигулёвская ГЭС 2,32 10,50 ОАО РусГидро р. Волга , г. Жигулевск
Бурейская ГЭС 2,01 7,10 ОАО РусГидро р. Бурея , пос. Талакан
Чебоксарская ГЭС 1,40 (0,8) 3,31 (2,2) ОАО РусГидро р. Волга , г. Новочебоксарск
Саратовская ГЭС 1,36 5,7 ОАО РусГидро р. Волга , г. Балаково
Зейская ГЭС 1,33 4,91 ОАО РусГидро р. Зея , г. Зея
Нижнекамская ГЭС 1,25 (0,45) 2,67 (1,8) ОАО «Генерирующая компания», ОАО «Татэнерго » р. Кама , г. Набережные Челны
Загорская ГАЭС 1,20 1,95 ОАО РусГидро р. Кунья , пос. Богородское
Воткинская ГЭС 1,02 2,60 ОАО РусГидро р. Кама , г. Чайковский
Чиркейская ГЭС 1,00 2,47 ОАО РусГидро р. Сулак , п. Дубки

Примечания:

Другие гидроэлектростанции России

Предыстория развития гидростроения в России

В Советский период развития энергетики упор делался на особую роль единого народнохозяйственного плана электрификации страны - ГОЭЛРО , который был утвержден 22 декабря 1920 года. Этот день был объявлен в СССР профессиональным праздником - Днём энергетика . Глава плана, посвященная гидроэнергетике - называлась «Электрификация и водная энергия». В ней указывалось, что гидроэлектростанции могут быть экономически выгодными, главным образом, в случае комплексного использования: для выработки электроэнергии, улучшения условий судоходства или мелиорации . Предполагалось, что в течение 10-15 лет в стране можно соорудить ГЭС общей мощностью 21 254 тыс. лошадиных сил (около 15 млн кВт), в том числе в европейской части России - мощностью 7394, в Туркестане - 3020, в Сибири - 10 840 тыс. л.с. На ближайшие 10 лет намечалось сооружение ГЭС мощностью 950 тыс. кВт, однако в последующем было запланировано сооружение десяти ГЭС общей рабочей мощностью первых очередей 535 тыс. кВт.

Хотя уже за год до этого в 1919 году Совет труда и обороны признал строительства Волховской и Свирской гидростанций объектами, имеющими оборонное значение. В том же году началась подготовка к возведению Волховской ГЭС, первой из гидроэлектростанций возведенных по плану ГОЭЛРО.

Однако и до начала строительства Волховской ГЭС Россия имела достаточно богатый опыт промышленного гидростроительства, в основном, частными компаниями и концессиями . Информация об этих ГЭС, построенных в России за последнее десятилетие 19-го века и первые 20 лет двадцатого столетия достаточно разрознена, противоречива и требует специальных исторических исследований.

Наиболее достоверным считается, что первой гидроэлектростанцией в России была Березовская (Зыряновская) ГЭС, построенная в Рудном Алтае на реке Березовка (приток р. Бухтармы) в 1892 году. Она была четырехтурбинная общей мощностью 200 кВт и предназначалась для обеспечения электричеством шахтного водоотлива из Зыряновского рудника.

На роль первой также претендует Ныгринская ГЭС, которая появилась в Иркутской губернии на реке Ныгри (приток р. Вачи) в 1896 году. Энергетическое оборудование станции состояло из двух турбин с общим горизонтальным валом, вращавшим три динамо-машины мощностью по 100 кВт. Первичное напряжение преобразовывалось четырьмя трансформаторами трехфазного тока до 10 кВ и передавалось по двум высоковольтным линиям на соседние прииски. Это были первые в России высоковольтные ЛЭП. Одну линию (длиной 9 км) проложили через гольцы к прииску Негаданному, другую (14 км) - вверх по долине Ныгри до устья ключа Сухой Лог, где в те годы действовал прииск Ивановский. На приисках напряжение трансформировалось до 220 В. Благодаря электроэнергии Ныгринской ГЭС в шахтах установили электрические подъемники. Кроме того, электрифицировали приисковую железную дорогу, служившую для вывоза отработанной породы, которая стала первой в России электрифицированной железной дорогой.

Преимущества

  • использование возобновляемой энергии.
  • очень дешевая электроэнергия.
  • работа не сопровождается вредными выбросами в атмосферу.
  • быстрый (относительно ТЭЦ/ТЭС) выход на режим выдачи рабочей мощности после включения станции.

Недостатки

  • затопление пахотных земель
  • строительство ведется только там, где есть большие запасы энергии воды
  • на горных реках опасны из-за высокой сейсмичности районов
  • сокращенные и нерегулируемые попуски воды из водохранилищ по 10-15 дней (вплоть до их отсутствия), приводят к перестройке уникальных пойменных экосистем по всему руслу рек, как следствие, загрязнение рек, сокращение трофических цепей, снижение численности рыб, элиминация беспозвоночных водных животных, повышение агрессивности компонентов гнуса (мошки) из-за недоедания на личиночных стадиях, исчезновение мест гнездования многих видов перелетных птиц, недостаточное увлажнение пойменной почвы, негативные растительные сукцессии (обеднение фитомассы), сокращение потока биогенных веществ в океаны.

Крупнейшие аварии и происшествия

Примечания

См. также

Ссылки

  • Карта крупнейших ГЭС России (GIF, данные 2003 года)

Люди очень давно научились использовать энергию воды для того, чтобы вращать рабочие колеса мельниц, станков, пилорам. Но постепенно доля гидроэнергии в общем количестве энергии, используемой человеком, уменьшилась. Это связано с ограниченной возможностью передачи энергии воды на большие расстояния. С появлением электрической турбины, приводимой в движение водой, у гидроэнергетики появились новые перспективы.

 Гидроэлектростанция представляет собой комплекс различных сооружений и оборудования, использование которых позволяет преобразовывать энергию воды в электроэнергию. Гидротехнические сооружения обеспечивают необходимую концентрацию потока воды, а дальнейшие процессы производятся при помощи соответствующего оборудования.

Гидроэлектростанции возводятся на реках, сооружая плотины и водохранилища. Большое значение для эффективности работы станции имеет выбор места. Необходимо наличие двух факторов: гарантированная обеспеченность водой в течение всего года и как можно больший уклон реки. Гидроэлектростанции разделяются на плотинные (необходимый уровень реки обеспечивается за счёт строительства плотины) и деривационные (производится отвод воды из речного русла к месту с большой разностью уровней).

Отличаться может и расположение сооружений станции. Например, здание станции может входить в состав водонапорных сооружений (так называемые русловые станции) или располагаться за плотиной (приплотинные станции).

Определение гидроэлектростанции

Гидроэлектростанция (ГЭС) - электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища.

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонообразные виды рельефа.

Технологии

Работа гидроэлектростанций основана на использовании кинетической энергии падающей воды. Для преобразования этой энергии применяются турбина и генератор. Сначала эти устройства вырабатывают механическую энергию, а затем уже электроэнергию. Турбины и генераторы могут устанавливаться непосредственно в дамбе или возле неё. В некоторых случаях используется трубопровод, посредством которого вода, находящаяся под давлением, подводится ниже уровня дамбы или к водозаборному узлу ГЭС.

Индикаторами мощности гидроэлектростанций являются две переменные: расход воды, который измеряется в кубических метрах и гидростатический напор. Последний показатель представляет собой разность высот между начальной и конечной точкой падения воды. Проект станции может основываться на каком-то одном из этих показателей или на обоих.

Современные технологии производства гидроэлектроэнергии позволяют получать довольно высокий КПД. Иногда он в два раза превышает аналогичные показатели обычных теплоэлектростанций. Во многом такая эффективность обеспечивается особенностями оборудования гидроэлектростанций. Оно очень надёжно, да и пользоваться им просто.

Кроме того, всё используемое оборудование обладает ещё одним важным преимуществом. Это длительный срок службы, что объясняется отсутствием теплоты в процессе производства. И действительно часто менять оборудование не нужно, поломки случаются крайне редко. Минимальный срок службы электростанций – около пятидесяти лет. А на просторах бывшего Советского Союза успешно функционируют станции, построенные в двадцатых или тридцатых годах прошлого века. Управление гидроэлектростанциями осуществляется через центральный узел, и вследствие этого в большинстве случаев там работает небольшой персонал.

Принцип работы ГЭС достаточно прост. Гидротехнические сооружения ГЭС обеспечивают необходимый поток воды, поступающей на лопасти гидротурбины, которая приводит в генератор, вырабатывающий электроэнергию.

Рис. 1. Схема одного из типов гидротурбин

Необходимый напор воды образуется плотиной (в случае с плотинным типом ГЭС) или деривацией - естественным стоком воды (деривационные ГЭС). В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию:

  • плотинные ГЭС (рис. 2). Это наиболее распространенные виды крупных гидроэлектрических станций в Кыргызстане. Напор воды в них создается посредством установки плотины, полностью перегораживающей реку и поднимающей уровень воды в ней на необходимую высоту. В этом случае само здание ГЭС располагается за плотиной, в нижней ее части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели.
  • деривационные ГЭС (рис. 3). Такие электростанции строят в тех местах, где есть уклон реки. Необходимое количество воды для создания напора отводится из речного русла через специальные водоотводы (каналы, рукава, арыки). Их уклон значительно меньше, чем средний уклон реки. В итоге вода, через определенное расстояние, поднимается на необходимую высоту и собирается в напорном бассейне. Оттуда, по напорному трубопроводу вода поступает в турбину и, в итоге, попадает опять в ту же реку. В некоторых случая, в начале деривационного канала создается плотина и небольшое водохранилище.

Рис. 2. ГЭС плотинного типа

Рис. 3. ГЭС деривационного типа

Непосредственно в самом здании ГЭС располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидрогенераторы, непосредственно преобразующие энергию воды в электрическую энергию. Также имеется электротехническое оборудование, которое включает в себя устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

  • мощные - вырабатывают от 30 МВт и выше;
  • малые ГЭС - от 1 МВт до 30 МВт;
  • мини ГЭС - от 100 кВт до 1 МВт;
  • микро ГЭС - от 5 кВт до 100 кВт;
  • пико ГЭС - до 5 кВт.

Мощность ГЭС зависит от напора и расхода воды, а также от КПД (коэффициента полезного действия) используемых турбин и генераторов. Из-за того, что по природным причинам расход воды постоянно меняется, в зависимости от сезона, а также еще по ряду других причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

В зависимости от расхода и напора воды, в гидроэлектростанциях применяются различные виды турбин. Для высоконапорных - ковшовые и радиально-осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаются поворотнолопастные и радиально-осевые турбины, на низконапорных - поворотнолопастные турбины в железобетонных или стальных камерах. Принцип работы всех видов турбин одинаков - вода, находящаяся под давлением (напор воды) поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передается на генератор, который и вырабатывает электроэнергию. Турбины отличаются некоторыми техническими характеристиками, а также камерами - стальными или железобетонными, и рассчитаны на различный напор воды.

В состав ГЭС, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы, рыбопропускные, водозаборные сооружения, используемые для ирригации и многое другое.

Ценность ГЭС состоит в том, что для производства электрической энергии, они используют возобновляемые природные ресурсы. Ввиду того, что потребности в дополнительном топливе для ГЭС нет, конечная стоимость получаемой электроэнергии значительно ниже, чем при использовании других видов электростанций.

Особенности гидроэлектростанций (плюсы и минусы)

  • (+) стоимость электроэнергии на ГЭС более чем в два раза ниже, чем на тепловых электростанциях.
  • (+) турбины ГЭС допускают работу во всех режимах от нулевой до максимальной мощности и позволяют быстро изменять мощность при необходимости, выступая в качестве регулятора выработки электроэнергии.
  • (+) сток реки является возобновляемым источником энергии
  • (+) значительно меньшее воздействие на воздушную среду и ледники, чем другими видами электростанций.
  • (-) часто эффективные ГЭС более удалены от потребителей и требуют строительства дорогостоящих линий электропередач (ЛЭП).
  • (-) водохранилища часто занимают значительные территории.
  • (-) плотины зачастую изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище и осуществлению рыбоводства.