Архитектурные решения домов с нулевым потреблением энергии. Проект нулевой дом

23 сентября 2009 в 15:51

Нулевые дома

  • Чулан

Энергосберегающие дома становятся все более популярными в мире. Строительство таких домов – не только дань современной моде, желание выделиться, построить что-то необычное, ультрасовременное. Рост популярности “нулевых домов” обусловлен и чисто экономическими соображениями, возможностью сэкономить на коммунальных платежах в будущем. В статье рассмотрены примеры строительства энергосберегающих сооружений в Китае.

Здания с нулевым балансом энергии – “нулевые дома” – постепенно завоёвывают мир. Считается, что такие дома могут функционировать полностью автономно и вырабатывать тепло и электричество для собственных нужд самостоятельно. Такие сооружения не зависят или почти не зависят от централизованных электро- и теплосетей. Солнечные коллекторы и батареи, ветрогенераторы и биореакторы интегрируют в коттеджи, павильоны, высотки и даже стадионы; используются специальные системы вентиляции и сбора дождевой воды, применяются элементы солнечной архитектуры и ряд других решений. Все это позволяет заметно экономить на эксплуатации таких зданий, а также делает не только безопасным, но и комфортным пребывание в них человека.

Примеры “нулевых домов”

20 сентября 2008 г. состоялось торжественное открытие Центра энергетических технологий в г. Нинбо (КНР) на территории кампуса китайского филиала британского университета Ноттингема. Здание Центра спроектировала итальянская компания Mario Cucinella Architects. При проектировании были использованы принципы “нулевого дома”, позволяющие максимально полно задействовать природные возможности для терморегуляции и освещения здания.

Здание Центра вмещает аудитории и офисы, небольшой выставочный зал, а также несколько лабораторий: стенды для испытания фасадов, термическая лаборатория для проверки конструкционных материалов, климатическая камера и аэродинамическая труба, лаборатория моделирования солнечного освещения. Общая площадь здания составляет 1300 кв.м и обеспечивается энергией за счёт фотоэлектрических батарей, объединенных в солнечную ферму, а также – ветряков. Здание оборудовано аккумуляторами, которые способны обеспечивать все строение электричеством в течение двух недель.

Правильное распределение воздушных и световых потоков в зависимости от высоты и положения солнца над горизонтом обеспечивается специальной архитектурой сооружения. В здании пять надземных и один подземный этаж. Все они соединяются между собой широкой шахтой, выходящей на крышу. Этот элемент позволяет отражённым лучам солнца проникать вглубь, сокращая потребность в электрическом освещении, а также задаёт пути для воздушных потоков. На собственное охлаждение Центр тратит всего 7-8 кВт·ч на 1 кв.м/год.

Другой пример “нулевого” сооружения в КНР – энергосберегающее здание, построенное для университета Синьхуа в Пекине. Здание спроектировано таким образом, чтобы минимизировать расходы на обогрев и охлаждение. Крыша-козырек с одной стороны создает тень в жаркую солнечную погоду, с другой – вырабатывает электричеств с помощью установленных здесь солнечных батарей.

Крупнейшим “нулевым” сооружением в Китае должна стать 300-метровая “Башня жемчужной реки” (Pearl River Tower) в Гуанчжоу, спроектированная американской компанией Skidmore, Owings & Merrill. 300-метровая 69-этажная “Башня жемчужной реки” задумана как здание нулевой энергии, то есть, оно не будет потреблять электричество из внешней сети. В башне будет выполнено специальное двойное остекление южного фасада (с вентиляцией между стёкол), способствующее снижению нагрева здания.

В Здании будут установлены автоматические жалюзи, поворачивающиеся на нужный угол по мере путешествия Солнца по небу, а также открывающиеся в пасмурную погоду для увеличения естественного освещения офисов. Всё это снизит затраты на кондиционирование.

Солнечные батареи будут вырабатывать электричество, избыток которого запасается в специальные аккумуляторы. Кроме фотоэлектрических панелей здесь смонтированы и солнечные тепловые коллекторы, нагревающие воду для обитателей небоскрёба.

Также американцы запланировали для “Жемчужной реки” систему сбора дождевой воды и систему очистки и рециркуляции технической воды (используемой, к примеру, для слива в унитазах), что должно сократить до минимума потребность здания во внешнем источнике влаги.

Плавные закругления стен небоскреба призваны направлять ветер насквозь здания через 2 технических этажа, где будут установлены ветровые турбины для производства электроэнергии. При этом здание специально спроектировано по преобладающим ветрам.

В системе охлаждения здания, которое будет работать в жарком и влажном климате, архитекторы применили целый ряд новинок, для минимизации расходов на поддержание микроклимата здания.

Это и пассивные осушители вентиляционного воздуха (каналы вентиляции проходят в полах здания), и система охлаждения воздуха в офисах с высоким КПД. В отличие от распространённых систем централизованного кондиционирования, она основана на циркуляции хладагента по многочисленным разветвлённым каналам, также пронизывающим полы на всех этажах.

Неконтролируемое использование полезных ископаемых, которые служат основными , неминуемо приведет к истощению мировых запасов. И это не единственная острая проблема для всего человечества: стоит лишь вспомнить, сколько загрязняющих веществ попадает в атмосферу вследствие нашей деятельности.

Одно из направлений, где можно минимизировать расход энергии, а, соответственно, – и использование топлива, и вредные выбросы – это строительство.

В этом плане уже достигнуты большие успехи – по всему миру внедряются принципы зеленого строительства, построены пассивные (с низким уровнем энергопотребления) и активные (которые производят энергии больше, чем потребляют) дома.

Особое место в данной линейке занимают дома с нулевым потреблением энергии.

Главная идея отражена в названии: она заключается в отсутствии потребности приобретать энергию. Здание способно вырабатывать ее самостоятельно – из возобновляемых источников.

Кстати, если энергии вырабатывается чуть меньше, чем нужно, такой дом называется «с почти нулевым энергопотреблением».

На практике это выглядит так: для обслуживания здания берется электроэнергия из автономных источников, и ее как раз хватает для обеспечения всех нужд. может отсутствовать вовсе.

Или еще один вариант: из общей сети берется энергия, которая тратится на , нагрев воды, и в эту же сеть подается энергия, выработанная установленными солнечными батареями, ветрогенераторами, тепловыми насосами.

Показатели берутся за год: и если полученный объем таков же, как отправленный в сеть, потребление считается нулевым.

Площадь для решения поставленных задач не имеет первостепенного значения: это не должно быть обязательно маленькое строение для одной семьи – успешно эксплуатируются и большие здания.

Здесь наиболее важны два момента. Во-первых, это энергоэффективность. То есть, доскональное соответствие сооружения всем канонам энергоэффективного строительства. Хотя дом может быть и обычным, традиционным – тогда , меняют окна и проводят остальные операции по обеспечению герметичности и недопущению .

Применяемые технологии производства энергии зависят от климатических условий местности.

Важную роль в таких домах играют системы управления микроклиматом, которые создают комфортные условия для жильцов, в то же время сокращая расходы на электричество, отопление и кондиционирование.

В подобном жилье также может использоваться биотопливо – из растительного и животного сырья.

Второй момент, имеющий большое значение, это экограмотность жильцов и их желание достичь энергоэффективности, в том числе путем снижения энергозатрат. К примеру, хорошим вариантом будет использование потолочного вентилятора вместо кондиционера, – чтобы не держать постоянно подогретой большую массу воды в обычном водонагревателе подобные мелочи, которые в итоге выливаются в значительную экономию.

Неминуемое изменение климата вследствие необдуманной деятельности человека пугающе приближается. Состав атмосферы меняется очень быстро, каждую секунду при сжигании полезных ископаемых выделяется углекислый газ.

И даже один дом, который не вносит свой вклад в загрязнение окружающей среды – это уже прогресс; именно в сфере строительства есть возможность резко снизить потребление топлива и, соответственно, СО 2 . Осталось только осуществить переход к уже четко определенным стандартам, а дело это небыстрое, так как существует множество проблем.

Спектр препятствий на пути , которые потребляют энергии столько же, сколько и производят, очень широк. Обозначим лишь некоторые из них.

Первое, это невозможность достичь стабильности альтернативных источников энергии.

Помимо того, что солнечная инсоляция, как и скорость ветра, меняется изо дня в день, мы сталкиваемся с такой проблемой, как смена времен года. К примеру, в зимний и летний период в одном и том же месте эффективность солнечных батарей будет разной.

Также есть проблема сохранения произведенной энергии, проблема производства и, конечно же, финансовый аспект. Экономическая эффективность – в долгосрочной перспективе, в то же время затраты на строительство велики, значительных вложений требуют и системы, производящие энергию. Скажем прямо, в нынешних реалиях такое жилье окупает себя очень долго.

Несмотря на эти и другие трудности, снижение энергозатрат в жилом секторе – актуальное и перспективное направление. И домов с нулевым потреблением энергии, как и с положительным энергобалансом, а также пассивных (с малым энергопотреблением) становится все больше.

Что такое «народный экодом нулевого энергопотребления»?

Экодом на Западе — это жилище, соответствующее «устойчивому развитию» цивилизации, т.е. такому развитию, при котором практически не используются невозобновляемые источники энергии и вещества с одной стороны, и не наносится вреда природе и здоровью человека, с другой. В США, Швеции, Германии, Японии и других странах уже десятилетиями эксплуатируются комфортабельные дома с низким и даже «нулевым» потреблением энергии, без канализационных сетей. В Стокгольме более 10 лет успешно эксплуатируется комфортабельный дом с бассейном и огромным зимним садом, не имеющий не только канализации, тепло- и электроснабжения, но и водопровода. Правда, назвать такой экодом «народным» никак нельзя — он стоит слишком дорого. Фирма ISOMAX уже построила несколько тысяч домов в Польше, Финляндии, Германии с системами солнечного отопления и аккумулирования и добилась того, что дома нулевого энергопотребления стоят не дороже каменных.

«Народный экодом», который мы разрабатываем, будет иметь себестоимость порядка 90 $/кв.м, причем при его строительстве используются только местные доступные экологически чистые природные материалы и энергосберегающие технологии строительства.

Почему так дешево?

Потому что технологии, переданные нам из США, Швеции и Германии дешевы, доступны и используют самые дешевые природные материалы — прессованную солому, либо глиносоломенную смесь. «Ну вот, опять саман, а мы — то думали…» — произнесет про себя читатель и будет не прав. Технология не предусматривает использование самана (80% -глина, 10% -солома и 10%-органика), а используется солома, смоченная глиняным раствором (90%- солома и 10% -глина). Эта «мокрая» технология обобщает четырехвековой немецкий опыт «фахтверкового» (каркасного) строительства в природно-климатических условиях, сходных с белорусскими. Саман почти в четыре раза тяжелее, не является теплоизолятором и в условиях Беларуси неприемлем — у нас слишком влажно.

Суть технологии проста: на фундаменте ставится деревянный каркас (20куб.м дерева на 200 кв.м жилья в двух уровнях), который заполняется методом скользящей опалубки глиносоломенной смесью, причем полностью (фронтоны и межстропильное пространство тоже). Это занимает менее месяца, после чего накрывается крыша и дом сохнет (3-12 месяцев в зависимости от погодных условий). После этого дом штукатурится и отделывается в зависимости от вкуса и возможностей хозяина. Кстати, стены толшиной 40-45 см обладают такой же теплоизолирующей способностью как кирпичные толщиной 0,7 м, и рядом других преимуществ: они легко «дышат» (не путать с инфильтрацией), решают проблему радона, не эмитируют вредные вещества, связанные с тепловой обработкой и т.д. Такие дома стоят в Германии 3-4 века и после своей «смерти» не создают проблем с утилизацией строительного мусора. Энергии для строительства таких домов тратится в тысячи раз меньше по сравнению с кирпичными и эксплуатационные затраты на отопление — меньше. Квалификация нужна только при строительстве каркаса и отделочных работах. Недостатками технологии являются большая трудоемкость и большие сроки строительства, связанные с сушкой самонесущего наполнителя стен.

Этих недостатков лишена другая, более эффективная индустриальная «сухая» технология, очень популярная сейчас в США, и использующая те же принципы. Она заключается в использовании прессованных соломенных блоков (сразу после пресс-подборщика с поля) как основного конструктивного стенового материала с последующим оштукатуриванием, то есть блоки могут укладываться на раствор или использоваться в качестве самонесущего наполнителя каркасных стен (сухая технология «прошивных матов»). Следует напомнить, что строительные стандарты США по многим параметрам жестче наших. и эта технология полностью сертифицирована в США. Например, по огнестойкости она полностью соответствует требованиям, а по теплопроводности — в 3 раза лучше. Наружная и внутренняя отделка стен в таких домах не отличается от обычной в США. Такой дом можно построить за неделю и отделывать сразу, что и было продемонстрировано в августе этого года Белорусским отделением Международной Академии Экологии и Solar Energy International из США в п.Занарочь. Стена такого дома при толщине 60 см имеет сопротивление теплопередаче не менее 10. Стоят такие дома по 100 и более лет. Например, сейчас в США живут люди в домах из прессованной соломы, построенных в прошлом веке.

А как насчет огнестойкости?

Согласно международным стандартам DIN 4102 и DIN 18951(21/51) глиносоломенные смеси являются негорючими материалами вплоть до 5% содержания глины при условии, что минеральное связующее (глина) равномерно распределено по объему. Объяснить это легко: глины содержат большое количество калийных соединений, являющихся антипиренами. По международным нормам оштукатуренные стены, построенные по «straw-bаlе» технологии, можно отнести к классу F45, т.е. сопротивляемость огню не менее 45 минут. Соломенные блоки, положенные на цементный раствор с последующим оштукатуриванием, имеют еще более высокий класс, вплоть до F120.

Какие коммуникации нужны экодому?

Вообще-то нужны только дороги и электричество (если не по карману дорогостоящие солнечные батареи с электроаккумулирующими системами). А канализация? Конечно, нужна, только не такая, как у нас. Наша, во-первых, она очень дорогая, во-вторых, не решает проблему утилизации хозбытовых стоков (например, проблему осадка сточных вод), а только переносит ее из одного места в другое, и главное — она не является системой локально замкнутого цикла. При индивидуальной застройке это как бы «теплотрасса наоборот», и вреда она наносит не меньше, чем наши пресловутые теплотрассы. Вместе с тем, американское «министерство здравоохраниния» давно сертифицировало и разрешило использовать даже в городах очень дешевые локальные биологические системы утилизации хозбытовых стоков, работающие по принципу «замкнутого цикла» и не создающие проблем ни зимой (до -50С), ни летом (до +50С), позволяющие пользоваться всеми благами цивилизации при двух условиях: в туалет нельзя сливать концентрированные яды и бросать биологически неразлагаемые предметы: пластик, некоторые виды бумаги и т.д. Площадь биоочистных — около 200 кв.метров, и выглядит как обычный фруктовый сад и огород; расчетное время эксплуатации на семью из 8 человек — около 100 лет, причем урожайность на этих двух сотках необычайно высока. Можно использовать специальные компостные туалеты, разработанные в Швеции и США и использовать компост как дешевое органическое удобрение.

Отопление (и кондиционирование) экодома обычно содержит основную и вспомогательную системы помимо пассивной солнечной, которая у нас практически не используется. Основная обычно состоит из солнечного теплового коллектора и теплоаккумулятора, запасающего тепло по суточным и сезонным циклам. Конструкции могут быть различными: в Швеции и Норвегии предпочетают твердотельные аккумуляторы под домом; в США и Германии — жидкостные внутри дома (на 200 кв.м жилой площади — около 15 тонн воды). Обычно такие системы стоят недешево, однако их можно сделать очень дешевыми, используя местные материалы и комплектующие: например, тепловой коллектор на крышу экодома конструкции БО МАЭ стоит всего 50$/Квт установленной мощности и не боится заморозков. Обязательной является система рекуперации тепла при вентиляции.

Вспомогательной отопительной системой является обычно камин или небольшая печь медленного горения. Фирма ISOMAX использует в качестве вспомогательной или «аварийной» систему электроподогрева пола с использованием ночного электричества мощностью 2 Вт/кв.м жилой плошади.

В статье приведена классификация зданий по их уровню энергопотребления, рассматриваются основные принципы проектирования и строительства пассивных домов.

Классификация зданий по их уровню энергопотребления

Для того чтобы понять, как различные строения отличаются между собой по их уровню энергоэффективности (или отсутствия такового), рассмотрим для начала европейскую классификацию зданий в зависимости от уровня энергопотребления во время их эксплуатации:

  • Старые здания (здания построенные до 1970-х годов) —требуют для своего функционирования (отопления и охлаждения) около 300 кВт-час/м² в год. Этот стандарт, к сожалению, до сих пор отвечает и обычному зданию, которое строится в Украине.
  • Новые здания (которые строились в Европе с 1970-х до 2002 года) — 150 кВтh/(м²a).
  • Дома низкого потребления энергии (с 2002 года в Европе не разрешено строительство домов с большим энергопотреблением!) — 60 кВт-час/м² в год.
  • Пассивный дом (принят Закон, согласно которому с 2019 года в Европе нельзя строить дома по стандартам ниже, чем пассивный дом) — 15 кВт-час/м² в год.
  • Дом нулевой энергии (здание, архитектурно имеющее тот же стандарт, что и пассивный дом, но инженерно оснащенное так, чтобы потреблять исключительно только ту энергию, которую само и вырабатывает) — 0 кВт-час/м² в год.
  • Дом плюс энергии (здание, которое с помощью установленного на нем инженерного оборудования: солнечных батарей, коллекторов, тепловых насосов, рекуператоров и т.п. вырабатывает больше энергии, чем само потребляет).

С 2019 года в Европе можно будет строить дома не ниже стандарта пассивного. При этом, дома нулевой или плюс энергии не отличаются от пассивного стандарта своими архитектурно-планировочными решениями и принципами строительства. В них увеличивается только объем и мощность инженерного оборудования на основе альтернативных источников энергии.

Таким образом, пассивный дом — это стандарт, к которому сейчас cтремится прогрессивное европейское сообщество. Считается, что концепция пассивного дома предлагает застройщику рациональное соотношение цены и получаемого качества в проектировании и строительстве. В зависимости от желания и финансовых возможностей заказчика, пассивный дом может потребовать увеличения затрат при строительстве от 3% до 30% по сравнению со стоимостью возведения обычного украинского дома. Но, при этом, на эксплуатационных расходах в этом доме будет экономится от 70% до 99%, что, к сожалению, у нас в Украине еще не очень актуально, так как цены на энергоносители далеки от европейских.

И все же, если только с помощью рационального проектирования можно значительно уменьшить затраты на эксплуатацию здания, то почему бы и нет?

Первое, что нужно понимать, когда речь заходит о пассивном доме: для того чтобы строить энерговыгодно средств нужно не на много (на 3-7%) больше, чем для обычного строительства. Ведь пассивный дом называется «пассивным» именно потому, что он уже за счет своей архитектуры — то есть не активно (с помощью инженерного оборудования), а пассивно (с помощью планировочного решения) — поглощает, аккумулирует и сохраняет для своих жильцов максимальное количество энергии из окружающей среды. Это достигается именно с помощью архитектурно-планировочного решения, которое основывается на обеспечении попадания внутрь здания максимального количества энергии от низкого зимнего солнца и максимально долгого ее сохранения с помощью качественной теплоизоляции, соответствующего пространственно-планировочного решения, а также почти полного отсутствия теплопотерь через вентиляцию.

Основные принципы проектирования пассивных домов

Суть пассивного дома заключается в экономии уже 80% энергии на эксплуатационных расходах только с помощью соответственного архитектурного проектирования, а также использования системы контролируемой приточно-вытяжной вентиляции с рекуперацией. Основные принципы проектирования пассивного дома можно разбить на следующие подразделы:

Ландшафтно-планировочные принципы

Правильная ориентация здания по сторонам света, основные принципы "правильности" описаны ниже:

Ветрозащита северной глухой стороны здания, закрытость этой стороны: зеленые насаждения, лес, другое здание и т.п.;

Открытость объема здания с юга, отсутствие затенения южного фасада.

Рис 1.Пример применения основных ландшафтно-планировочных и некоторых объемно-планировочных принципов

На рисунке 1 видно, как применены эти принципы, на примере пассивного дома под Черниговом (арх. Т.Эрнст). План дома компактный. С южной стороны выполнено полное остекление Северный фасад глухой, без окон, со стороны северного фасада внутри дома расположены буферные зоны. С севера дом защищен дерерьями, с юга- полностью открыт.

Объемно-планировочные принципы

  • максимальная компактность здания. Компактность — это соотношение площади ограждающих конструкций (оболочки здания ) и всего объема здания (его полезной площади). Чем меньше площадь ограждающих конструкций по отношению к полезной площади здания, тем компактнее оно;
  • по возможности полное отсутствие эркеров, внутренних углов, балконов и т.п. Идеальной считается максимальная приближенность формы здания к самой компактной: полушару, стоящему срезом на земле;
  • зонирование: разделение на буферные и жилые зоны;
  • расположение вспомогательных помещений с севера в качестве буферных зон;
  • расположение жилой зоны на юго-востоке;
  • расположение зимних садов с южной стороны;
  • наличие наружной летней солнцезащиты в виде выступающих архитектурных элементов: эркеров, карнизов, балконов, террас, затеняющих светопрозрачные конструкции и не дающие попадать лучам высокого летнего солнца в здание.

Примечание: этот пункт не должен вступать в противоречие с требованием к компактности плана (то есть, компактности именно "теплого" объема здания). Защита от солнца- это архитектурные элементы, а не "вычурность" плана дома. Солнцезащитные элементы имеют, как правило, свою собственную несущую конструкцию и отдельный фундамент, так как являются "холодными" (не утепленными) и находятся снаружи от утепленной оболочки здания.

На рисунке 2 показано, как применены объемно- планировочные принципы, на примере типового пассивного дома (арх.Т.Эрнст). Видно, как проникают в дом лучи низкого зимнего солнца, при этом выполнена защита от летнего перегрева (с помощью свеса кровли, а также навеса террасы). Также видно, что буферные помещения дома расположены с северной строны.

Фасадные (правильное остекление здания)

  • отсутствие светопрозрачных частей, через которые тепло покидало бы здание, на его северной стороне;
  • расположение с юга максимального количества светопрозрачных конструкций, которые пропускали бы глубоко в здание лучи низкого зимнего солнца;
  • окна и другие светопрозрачные конструкции должны располагаться на фасаде в таком соотношении: 70-80% всех окон с южной стороны, 20-30% с восточной, 0-10% с западной и полное их отсутствие с северной.

Аккумулирующие элементы

  • наличие массивных аккумулирующих элементов внутри помещений для обеспечения приема, сохранения и отдачи ими энергии в местах, куда попадают прямые солнечные лучи от низкого зимнего солнца. Массивными аккумулирующими элементами в этом случае могут служить стены из полнотелого кирпича или бетона, желательно, отделанные изнутри глиняной штукатуркой. Если стены изнутри отделаны гипсокартоном - то массива уже нет. Если стены выполнены из пустотелого кирпича, пено или газоблока, или дерева - то массива тоже нет;
  • использование тромб-стен .

Примечание: тромб стены предназначены для улавливания и аккумулировании солнечного излучения, используемого для нагревания воздуха внутри отапливаемого здания. Циркуляция воздуха в пространстве между остеклением и лучепоглощающей поверхностью — естественная, при этом воздух из каждого помещения выходит через отверстие в нижней части стены, проходит между стеной и остеклением наверх, и уже нагретый воздух возвращается в помещение через отверстия в верхней части теплоаккумулирующей стены.

  • планирование неглубоких помещений, в которых низкое зимнее солнце попадало бы на заднюю массивную (желательно темную) стену, прогревая ее;
  • массивные элементы внутри здания (простенки, внутренние части утепленных наружных стен) также способствуют пассивному накоплению в здании ночного холода в летний зной;
  • улавливание аккумулирующими элементами энергии «внутренних источников тепла» (бытовых приборов, тела человека, лампочек, компьютеров и т.п.).

Инженерные решения

  • система контролируемой приточно-вытяжной вентиляции с рекуперацией ;
  • использование подземных каналов (грунтовых теплообменников ) для пассивного предварительного подогрева (или охлаждения) воздуха или воды.


Рис 9. Пример грунтового теплообменника

Выводы

За счет вышеперечисленных приемов, пассивным способом, экономится огромное количество энергии. В результате — мы получаем пассивный дом, который на эксплуатацию (отопление и охлаждение) требует не более 20% от обычного дома. Причем это не стоит застройщику почти никаких дополнительных инвестиций при строительстве. Все что нужно сделать — это создать правильный архитектурный проект будущего здания и качественно воплотить его в жизнь. Дополнительные расходы на увеличение толщины утеплителя, как правило, нивелируются компактностью здания. А система приточно-вытяжной вентиляции является, по большому счету, обязательной абсолютно для любого типа здания, а не только для энерговыгодных домов. Ведь контролируемая вентиляция — это единственный метод, который обеспечивает 100% качество воздуха постоянно.

Дополнительную же энергию на обслуживание дома можно экономить уже активно: с помощью соответствующего инженерного оборудования (тепловые насосы, солнечные коллекторы, солнечные батареи, ветряки и т.п.), работающего от альтернативных источников энергии (тепла земли и солнца, силы ветров и т.п.). Подобная инженерия в пассивном доме является не обязательной, а только опциональной. Она может значительно (на 10-30%) повысить сметную стоимость здания, но с ее помощью можно свести затраты по эксплуатации дома и его вредное воздействие на окружающую среду практически к нулю, получив, так называемый дом «нулевой энергии», а при желании и наличии средств, даже дом «плюс энергии».

) энергоэффективное здание, соответствующее наивысшему стандарту энергосбережения в мировой практике индивидуального и многоэтажного строительства. Для пассивного дома энергопотребление составляет около 10% от удельной энергии на единицу объема, потребляемой большинством современных зданий. Незначительное отопление требуется лишь в период отрицательных температур.

В идеале пассивный дом является независимой энергосистемой, вообще не требующей расходов на поддержание комфортной температуры воздуха и воды. вся необходимая энергия для жизнедеятельности людей должна вырабатываться внутри дома, причем при помощи возобновляемых источников энергии.

Основным принципом проектирования энергоэффективного дома является использование всех возможностей сохранения тепла . В таком доме нет необходимости в применении традиционных систем отопления, вентиляции, кондиционирования, водоснабжения. Отопление нулевого дома осуществляться благодаря теплу, выделяемому живущими в нем людьми, бытовыми приборами и альтернативными источниками энергии, горячее водоснабжение – за счет установок возобновляемой энергии, например, тепловых насосов, солнечных батарей и термовихревых установок.

Кроме того, нулевые дома очень комфортны и экологически благоприятны для человека. На сегодняшний день такие сооружения – самые удобные и современные типы зданий. В них автоматически поддерживается оптимальная температура, влажность и чистота воздуха, что превращает жизнь в такого рода домах в удовольствие. С учетом того, что люди около 60% своего времени проводят в помещениях, значение таких объектов для поддержания высокого качества жизни трудно переоценить. Микроклимат такого здания способствует продлению жизни человека.

В целом нулевые дома – наиболее удобные, современные и эффективные типы зданий. Наибольшим практическим опытом реализации проектов нулевых домов обладают страны Западной Европы. На сегодняшний день построены тысячи подобных сооружений. Концепция энергоэффективных и пассивных домов является перспективной и реализуемой и у нас.

Теплопотери нулевого дома близки к нулю. При тех же условиях обычный дом «отапливает» улицу.

Преимущества энергоэффективных и нулевых домов

Тарифы на газ и электроэнергию растут вопреки кризису. К 2011-2012 гг. согласно уже опубликованным планам российских естественных монополий их размер увеличится как минимум в 2 раза. Владелец нулевого дома экономит до 80% энергоресурсов на отопление. Весной отопительный период нулевого дома заканчивается раньше, осенью – начинается позже. В летний период сведены к нулю затраты электроэнергии на кондиционирование.

Энергонезависимость

Нулевой дом позволяет отказаться от централизованного газо- и/или теплоснабжения и строить дома в «чистом поле». Однако в ближайшем будущем концепция нулевого дома получит широкое распространение и в пределах территории с развитой инфраструктурой. При аварийном отключении тепла зимой температура внутри нулевого дома понижается лишь на 1-2 °С в сутки. Отсутствие необходимости подключения к газовым сетям, а также коммунальных платежей за газ сокращает срок его окупаемости.

Комфортная внутренняя среда

С учетом того, что человек в среднем более 60% своего времени проводит дома, комфортная среда является одним из важнейших факторов при выборе типа здания. Благодаря применяемым техническим решениям, в этих домах поддерживается благоприятный для здоровья человека внутренний климат: теплые стены и полы, оптимальная температура, влажность и чистота воздуха. Достоверно установлено, что комфортная среда обитания, формируемая в пассивных домах, способствует продлению дееспособного срока жизни человека. Например, микроклимат такого здания благотворно влияет на аллергиков. Неудивительно, что именно эти особенности пассивных домов стали причиной их быстро растущей популярности в последние годы.

Высокая ликвидность

Энергоэффективность становится одним из основных стандартов качественного жилья. Постепенно по мере появления все большего числа энергоэффективных домов продать обычный дом станет все сложнее без уступок в цене. Расходы на утепление значительно уступают последующему размеру роста стоимости дома и являются своего рода инвестициями в будущее.

Нулевой дом в полной мере является жильем 21 века. Используемые решения в области обогрева, минимизации энергопотерь, вентиляции, инженерных систем, считающиеся технологиями завтрашнего дня, доступны в нулевом доме уже сегодня.

Экологическая составляющая

Нулевой дом часто называют также «экологическими домами» («ЭкоДом»). Известно, что около 40% выбросов CO2 в атмосферу образуется при сжигании топлива, используемого именно для отопления зданий. Применение нулевых домов может сократить эти цифры – ведь в них для обогрева используются альтернативные источники энергии. Кроме этого, для строительства выбираются экологически чистые материалы, часто традиционные – дерево, камень, кирпич.

Существуют ли какие-нибудь архитектурные ограничения при строительстве Пассивного Дома?

Пассивный Дом, также как и обычный дом, может быть любой планировки и этажности, никаких особых ограничений в данном случае не существует. Единственная желательная рекомендация – расположение большинства окон на южной стороне здания (для уменьшения тепловых потерь).

Для чего нужно строить Пассивный Дом?

Срок эксплуатации современного капитального здания – несколько десятков лет. Для поддержания жизнедеятельности людей за это время расходуется огромное количество тепловой и электрической энергии (а значит и денег). Пассивный Дом позволяет в несколько раз сократить потребление ресурсов и затрат на отопление. Особенно актуальным это становится в следующих случаях:

– для обогрева здания используется электричество;

– на участке строительства (или в уже построенном доме) подведено электричество ограниченной мощности (либо отсутствует вообще), а увеличение подводимой мощности (прокладка линий электропередач до Вашего дома) связано с большими капитальными вложениями;

– cуществует потребность снизить потребление электричества;

– для обогрева здания используется твердое топливо, жидкое топливо, либо сжиженный газ в баллонах и необходимо снизить его потребление или перейти на более удобный источник энергии;

– для обогрева используется магистральный природный газ, но, учитывая растущиетарифы, необходимо сэкономить его расход;

Так же не стоит забывать и про то, что запасы энергоресурсов (нефти, газа) ограничены, ввиду чего цена на них с каждым годом становится все больше.

Принципы проектирования энергоэффективного дома

Архитектурное решение

  • энергетически рациональная ориентация здания по частям света с точки зрения расположения оконных проемов, дверей и буферных зон.

Объемно-планировочное решение

  • энергоэффективная форма дома, обеспечивающая минимальную площадь наружных стен;
  • оптимальная площадь остекления;
  • наличие тамбуров на входах.

Конструктивные решения

Инженерные решения

  • обеспечение воздухообмена с минимальными теплопотерями, обеспечиваемого механической приточно-вытяжной системой с рекуперацией тепла.

Устройство пластинчатого рекуператора

Рекуператор – это устройство, в котором происходит передача тепла «отработанного» уходящего воздуха свежему входящему воздуху, т.е. мы не «выбрасываем» тепло из помещения вместе с воздухом вытяжной вентиляции, а используем это тепло для нагрева входящего воздуха. Приточный и вытяжной потоки воздуха в рекуператоре не смешиваются, происходит только передача тепла.

  • рациональное использование источников тепла и энергии самого дома (внутренние тепловыделения электроприборов) и окружающей его территории: например, использование тепловой энергии земли с помощью теплового насоса, который позволяет получить до 5 кВт*ч тепловой энергии на каждый киловатт-час затраченной электроэнергии. Возможно использование солнечной энергии и ветровой энергии.

  • применение современного инженерного оборудования с высоким КПД (например, теплогенераторов, вихревых термогенераторов).
  • дополнительная экономия тепловой энергии за счет использования автоматизированной системы управления всеми техническими устройствами в здании (система « »)

Экономическая выгода

Экономическая выгода нулевого дома была не столь очевидна в прошлые времена экономического благополучия, низких цен на энергоносители и их доступности. В будущем стоимость энергии будет постоянно расти, а доступность энергоносителей и инфраструктуры снижаться. Причина подобных тенденций – серьёзный структурный кризис российской энергетики, последствия которого начинают ощущаться уже сейчас.

Наибольшая экономия в нулевом доме достигается на отоплении – первоначальные затраты на отопление могут быть снижены в 10 раз . Если же в доме установлена «умная» система контроля энергосистемы, то затраты на отопление и энергоснабжение могут быть снижены еще более значительно. Средняя стоимость окупаемости инженерных систем умного дома укладывается в диапазоне 5-7 лет при постоянных ценах на энергоносители.

Строительство Нулевого дома площадью 200 м2, в условиях доступности сетевой энергетической инфраструктуры, с условием внедрения всех возможных энергоэффективных решений, обходится в среднем на 30% дороже сооружения аналогичного по площади традиционного загородного дома, однако за счёт принципиального снижения расходов на электроснабжение и тепло эти затраты окупаются в течение 5-8 лет. В последующем суммарные расходы на строительство и энергообеспечение нулевого дома меньше тех же расходов на традиционный, что позволяет получать заказчику существенный экономический эффект.

В условиях недоступности сетевой инфраструктуры капитальные затраты окупаются еще быстрее. В этом случае решения по автономному электроснабжению уже сегодня конкурентоспособны по уровню капитальных затрат с традиционным сетевым электроснабжением. Установившие такие системы ( ы малой мощности, ) домохозяйства начинают выигрывать, за счёт сокращения выплат за электроэнергию.