Способы получения солей. Соли

Солями называются сложные вещества, молекулы которых, состоят из атомов металлов и кислотных остатков (иногда могут содержать водород). Например, NaCl – хлорид натрия, СаSO 4 – сульфат кальция и т. д.

Практически все соли являются ионными соединениями, поэтому в солях между собой связаны ионы кислотных остатков и ионы металла:

Na + Cl – – хлорид натрия

Ca 2+ SO 4 2– – сульфат кальция и т.д.

Соль является продуктом частичного или полного замещения металлом атомов водорода кислоты. Отсюда различают следующие виды солей:

1. Средние соли – все атомы водорода в кислоте замещены металлом: Na 2 CO 3 , KNO 3 и т.д.

2. Кислые соли – не все атомы водорода в кислоте замещены металлом. Разумеется, кислые соли могут образовывать только двух- или многоосновные кислоты. Одноосновные кислоты кислых солей давать не могут: NaHCO 3 , NaH 2 PO 4 ит. д.

3. Двойные соли – атомы водорода двух- или многоосновной кислоты замещены не одним металлом, а двумя различными: NaKCO 3 , KAl(SO 4) 2 и т.д.

4. Соли основные можно рассматривать как продукты неполного, или частичного, замещения гидроксильных групп оснований кислотными остатками: Аl(OH)SO 4 , Zn(OH)Cl и т.д.

По международной номенклатуре название соли каждой кислоты происходит от латинского названия элемента. Например, соли серной кислоты называются сульфатами: СаSO 4 – сульфат кальция, Mg SO 4 – сульфат магния и т.д.; соли соляной кислоты называются хлоридами: NaCl – хлорид натрия, ZnCI 2 – хлорид цинка и т.д.

В название солей двухосновных кислот добавляют частицу «би» или «гидро»: Mg(HCl 3) 2 – бикарбонат или гидрокарбонат магния.

При условии, что в трехосновной кислоте замещён на металл только один атом водорода, то добавляют приставку «дигидро»: NaH 2 PO 4 – дигидрофосфат натрия.

Соли – это твёрдые вещества, обладающие самой различной растворимостью в воде.

Химические свойства солей

Химические свойства солей определяются свойствами катионов и анионов, которые входят в их состав.

1. Некоторые соли разлагаются при прокаливании:

CaCO 3 = CaO + CO 2

2. Взаимодействуют с кислотами с образованием новой соли и новой кислоты. Для осуществление этой реакции необходимо, чтобы кислота была более сильная чем соль, на которую воздействует кислота:

2NaCl + H 2 SO 4 → Na 2 SO 4 + 2HCl.

3. Взаимодействуют с основаниями , образуя новую соль и новое основание:

Ba(OH) 2 + Mg SO 4 → BaSO 4 ↓ + Mg(OH) 2 .

4. Взаимодействуют друг с другом с образованием новых солей:

NaCl + AgNO 3 → AgCl + NaNO 3 .

5. Взаимодействуют с металлами, которые стоят в раду активности до металла, который входит в состав соли:

Fe + CuSO 4 → FeSO 4 + Cu↓.

Остались вопросы? Хотите знать больше о солях?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Которые состоят из аниона (кислотного остатка) и катиона (атом металла). В большинстве случаев это кристаллические вещества различной окраски и с разной растворимостью в воде. Простейший представитель данного класса соединений - (NaCl).

Соли делятся на кислые, нормальные и основные.

Нормальные (средние) образуются в случаях, когда в кислоте все атомы водорода замещаются на атомы металла или когда все гидроксильные группы основы замещаются на кислотные остатки кислот (например, MgSO4, Mg (CH3COO) 2). При электролитической диссоциации они разлагаются на положительно заряженные анионы металлов и отрицательно заряженные кислотные остатки.

Химические свойства солей данной группы:

Разлагаются при воздействии высоких температур;

Подвергаются гидролизу (взаимодействие с водой);

Вступают в реакции обмена с кислотами, другими солями и основаниями. При этом следует помнить некоторые особенности данных реакций:

Реакция с кислотой проходит лишь тогда, когда эта чем та, от которой происходит соль;

Реакция с основанием проходит в случае, когда образуется нерастворимое вещество;

Солевой раствор реагирует с металлом, если он стоит в электрохимическом ряду напряжений левее металла, который входит в состав соли;

Солевые соединения в растворах взаимодействуют друг с другом, если при этом образуется нерастворимый продукт обмена;

Редокс, что можно связать со свойствами катиона или аниона.

Кислые соли получают в случаях, когда лишь часть атомов водорода в кислоте замещается на атомы металлов (например, NaHSO4, CaHPO4). При электролитической диссоциации они образуют катионы водорода и металла, анионы кислотного остатка, поэтому химические свойства солей данной группы включают следующие признаки как солевых, так и кислотных соединений:

Подвергаются термическому разложению с образованием средней соли;

Взаимодействуют со щелочью, образуя нормальную соль.

Основные соли получают в случаях, когда лишь часть гидроксильных групп основ замещается на кислотные остатки кислот (например, Cu (OH) или Cl, Fe (OH) CO3). Такие соединения диссоциируют на катионы металлов и анионы гидроксила и кислотного остатка. Химические свойства солей данной группы включают характерные химические признаки и солевых веществ, и основ одновременно:

Характерно термическое разложение;

Взаимодействуют с кислотой.

Существует еще понятие комплексных и

Комплексные содержат комплексный анион или катион. Химические свойства солей такого типа включают реакции разрушения комплексов, сопровождающиеся образованием малорастворимых соединений. Кроме этого, они способны обмениваться лигандами между внутренней и внешней сферой.

Двойные же имеют два различных катиона и могут реагировать с растворами щелочей (реакция восстановления).

Способы получения солей

Данные вещества можно получить следующими способами:

Взаимодействием кислот с металлами, которые способны вытеснять атомы водорода;

При реакции основ и кислот, когда гидроксильные группы основ обмениваются с кислотными остатками кислот;

Действием кислот на амфотерные и соли или металлы;

Действием оснований на кислотные оксиды;

Реакцией между кислотными и основными оксидами;

Взаимодействием солей между собой или с металлами ;

Получение солей при реакциях металлов с неметаллами;

Кислые солевые соединения получают при реакции средней соли с одноименной кислотой;

Основные солевые вещества получают путем взаимодействия соли с небольшим количеством щелочи.

Итак, соли можно получить многими способами, так как они образуются в результате многих химических реакций между различными неорганическими веществами и соединениями.

Известно большое число реакций, приводящих к образованию солей. Приведем наиболее важные из них.

1. Взаимодействие кислот с основаниями (реакция нейтрализации):

N аОН + Н NO 3 = N а NO 3 + Н 2 О

Al (OH ) 3 + 3НС1 = AlCl 3 + 3Н 2 О

2. Взаимодействие металлов с кислотами:

F е + 2 HCl = FeCl 2 + Н 2

Zn + Н 2 S О 4 разб. = ZnSO 4 + Н 2

3. Взаимодействие кислот с основными и амфотерными оксидами:

С uO + Н 2 SO 4 = С uSO 4 + Н 2 О

ZnO + 2 HCl = Zn С l 2 + Н 2 О

4. Взаимодействие кислот с солями:

FeCl 2 + H 2 S = FeS + 2 HCl

AgNO 3 + HCI = AgCl + HNO 3

Ba(NO 3 ) 2 + H 2 SO 4 = BaSO 4 + 2HNO 3

5. Взаимодействие растворов двух различных солей:

BaCl 2 + Na 2 SO 4 = Ва SO 4 + 2N аС l

Pb(NO 3 ) 2 + 2NaCl = Р b С 1 2 + 2NaNO 3

6. Взаимодействие оснований с кислотными оксидами (щелочей с амфотерными оксидами):

Са(ОН) 2 + СО 2 = СаСО 3 + Н 2 О,

2 N аОН (тв.) + ZnO Na 2 ZnO 2 + Н 2 О

7. Взаимодействие основных оксидов с кислотными:

Са O + SiO 2 Са SiO 3

Na 2 O + SO 3 = Na 2 SO 4

8. Взаимодействие металлов с неметаллами:

2К + С1 2 = 2КС1

F е + S F е S

9. Взаимодействие металлов с солями.

Cu + Hg(NO 3 ) 2 = Hg + Cu(NO 3 ) 2

Pb(NO 3 ) 2 + Zn = Р b + Zn(NO 3 ) 2

10. Взаимодействие растворов щелочей с растворами солей

CuCl 2 + 2NaOH = Cu(OH) 2 ↓+ 2NaCl

NaHCO 3 + NaOH = Na 2 CO 3 + H 2 O

      1. Применение солей.

Ряд солей являются соединениями необходимыми в значительных количествах для обеспечения жизнедеятельности животных и растительных организмов (соли натрия, калия, кальция, а также соли, содержащие элементы азот и фосфор). Ниже, на примерах отдельных солей, показаны области применения представителей данного класса неорганических соединений, в том числе, в нефтяной промышленности.

N аС1 - хлорид натрия (соль пищевая, поваренная соль). О широте использования этой соли говорит тот факт, что мировая добыча этого вещества составляет более 200 млн. т.

Эта соль находит широкое применение в пищевой промышленности, служит сырьем для получения хлора, соляной кислоты, гидроксида натрия, кальцинированной соды (Na 2 CO 3 ). Хлорид натрия находит разнообразное применение в нефтяной промышленности, например, как добавка в буровые растворы для повышения плотности, предупреждения образования каверн при бурении скважин, как регулятор сроков схватывания цементных тампонажных составов, для понижения температуры замерзания (антифриз) буровых и цементных растворов.

КС1 - хлорид калия. Входит в состав буровых растворов, способствующих сохранению устойчивости стенок скважин в глинистых породах. В значительных количествах хлорид калия используется в сельском хозяйстве в качестве макроудобрения.

Na 2 CO 3 - карбонат натрия (сода). Входит в состав смесей для производства стекла, моющих средств. Реагент для увеличения щелочности среды, улучшения качества глин для глинистых буровых растворов. Используется для устранения жесткости воды при ее подготовке к использованию (например, в котлах), широко используется для очистки природного газа от сероводорода и для производства реагентов для буровых и тампонажных растворов.

Al 2 (SO 4 ) 3 - сульфат алюминия. Компонент буровых растворов, коагулянт для очистки воды от тонкодисперсных взвешенных частиц, компонент вязкоупругих смесей для изоляции зон поглощения в нефтяных и газовых скважинах.

N а 2 В 4 О 7 - тетраборат натрия (бура). Является эффективным реагентом - замедлителем схватывания цементных растворов, ингибитором термоокислительной деструкции защитных реагентов на основе эфиров целлюлозы.

B а S О 4 - сульфат бария (барит, тяжелый шпат). Используется в качестве утяжелителя (  4,5 г/см 3) буровых и тампонажных растворов.

2 SO 4 - сульфат железа (П) (железный купорос). Используется для приготовления феррохромлигносульфоната - реагента-стабилизатора буровых растворов, компонент высокоэффективных эмульсионных буровых растворов на углеводородной основе.

F еС1 3 - хлорид железа (Ш). В сочетании со щелочью используется для очистки воды от сероводорода при бурении скважин водой, для закачки в сероводородсодержащие пласты с целью снижения их проницаемости, как добавка к цементам с целью повышения их стойкости к действию сероводорода, для очистки воды от взвешенных частиц.

CaCO 3 - карбонат кальция в виде мела, известняка. Является сырьем для производства негашеной извести СаО и гашеной извести Ca(OH) 2 . Используется в металлургии в качестве флюса. Применяется при бурении нефтяных и газовых скважин в качестве утяжелителя и наполнителя буровых растворов. Карбонат кальция в виде мрамора с определенным размером частиц применяется в качестве расклинивающего агента при гидравлическом разрыве продуктивных пластов с целью повышения нефтеотдачи.

CaSO 4 - сульфат кальция. В виде алебастра (2СаSО 4 · Н 2 О) широко используется в строительстве, входит в состав быстротвердеющих вяжущих смесей для изоляции зон поглощений. При добавке к буровым растворам в виде ангидрита (СаSО 4) или гипса (СаSО 4 · 2Н 2 О) придает устойчивость разбуриваемым глинистым породам.

CaCl 2 - хлорид кальция. Используется для приготовления буровых и тампонажных растворов для разбуривания неустойчивых пород, сильно снижает температуру замерзания растворов (антифриз). Применяется для создания растворов высокой плотности, не содержащих твердой фазы, эффективных для вскрытия продуктивных пластов.

N а 2 Si О 3 - силикат натрия (растворимое стекло). Используется для закрепления неустойчивых грунтов, для приготовления быстросхватывающихся смесей для изоляции зон поглощений. Применяется в качестве ингибитора коррозии металлов, компонента некоторых буровых тампонажных и буферных растворов.

AgNO 3 - нитрат серебра. Используется для химического анализа, в том числе пластовых вод и фильтратов буровых растворов на содержание ионов хлора.

Na 2 SO 3 - сульфит натрия. Используется для химического удаления кислорода (деаэрация) из воды в целях борьбы с коррозией при закачке сточных вод. Для ингибирования термоокислительной деструкции защитных реагентов.

Na 2 Cr 2 О 7 - бихромат натрия. Используется в нефтяной промышленности в качестве высокотемпературного понизителя вязкости буровых растворов, ингибитора коррозии алюминия, для приготовления ряда реагентов.

Ни один процесс в мире не возможен без вмешательства химических соединений, которые, реагируя между собой, создают основу для благоприятных условий. Все элементы и вещества в химии классифицируются в соответствии со строением и функциями, которые они выполняют. Основными являются кислоты и основания. При их взаимодействии образуются растворимые и нерастворимые соли.

Примеры кислот, солей

Кислота - сложное вещество, которое в своем составе содержит один или более атомов водорода и кислотный остаток. Отличительным свойством таких соединений является способность заменить водород металлом или каким-либо положительным ионом, в результате чего происходит образование соответствующей соли. Практически все кислоты, за исключением некоторых (H 2 SiO 3 - кремниевая кислота), растворимы в воде, причем сильные, такие как HCl (соляная), HNO 3 (азотная), H 2 SO 4 (серная), полностью распадаются на ионы. А слабые (например, HNO 2 - азотистая, H 2 SO 3 - сернистая) - частично. Их водородный показатель (pH), определяющий активность ионов водорода в растворе, меньше 7.

Соль - сложное вещество, состоящее чаще всего из катиона металла и аниона кислотного остатка. Обычно она получается при реагировании кислот и оснований. В результате такого взаимодействия еще выделяется вода. В качестве катионов соли могут служить, например, катионы NH 4 + . Они, так же как и кислоты, могут растворяться в воде с различной степенью растворимости.

Примеры солей в химии: СаСО 3 - карбонат кальция, NaCl - хлорид натрия, NH 4 Cl - хлорид аммония, K 2 SO 4 - сульфат калия и другие.

Классификация солей

В зависимости от количества замещения катионов водородов выделяют следующие категории солей:

  1. Средние - соли, в которых катионы водороды заменяются полностью на катионы металлов или другие ионы. Такими примерами солей в химии могут послужить самые обычные вещества, которые встречаются чаще всего - KCl, K 3 PO 4 .
  2. Кислые - вещества, в которых катионы водорода замещаются другими ионами не полностью. Примерами могут послужить гидрокарбонат натрия (NaHCO 3) и гидроортофосфат калия (K 2 HPO 4).
  3. Основные - соли, в которых кислотные остатки не до конца замещаются гидроксогруппой при избытке основания или недостатке кислоты. К таким веществам относится MgOHCl.
  4. Комплексные соли: Na, K 2 .

В зависимости от количества присутствующих в составе соли катионов и анионов различают:

  1. Простые - соли, имеющие в составе один вида катиона и аниона. Примеры солей: NaCl, K 2 CO 3 , Mg(NO3) 2 .
  2. Двойные - соли, которые состоят из пары типов положительно заряженных ионов. К таким относится сульфат алюминия-калия.
  3. Смешанные - соли, в которых присутствует два вида аниона. Примеры солей: Са(OCl)Cl.

Получение солей

Эти вещества получаются главным образом при реагировании щелочи с кислотой, в результате чего образуется вода: LiOH + HCl = LiCl + H 2 O.

При взаимодействии кислотного и основного оксидов также образуются соли: СаО + SO 3 = CaSO 4.

Они же получаются при вступлении в реакцию кислоты и металла, который стоит до водорода в электрохимическом ряду напряжений. Как правило, это сопровождается выделением газа: H 2 SO 4 + Li = Li 2 SO 4 + H 2.

При взаимодействии оснований (кислот) с кислотными (основными) оксидами образуются соответствующие соли: 2KOH + SO 2 = K 2 SO 3 + H 2 O; 2HCl + CaO = CaCl 2 + H 2 O.

Основные реакции солей

При взаимодействии соли и кислоты получается другая соль и новая кислота (условием такой реакции является то, что в результате должен выпасть осадок или выделиться газ): HCl + AgNO 3 = HNO 3 + AgCl.

При реагировании двух разных растворимых солей получают: CaCl 2 + Na 2 CO 3 = CaCO 3 + 2NaCl.

Некоторые плохо растворимые в воде соли обладают способностью разлагаться на соответствующие продукты реакции при нагревании: СаСО 3 = СаО + СО 2.

Некоторые соли могут подвергаться гидролизу: обратимо (если это соль сильного основания и слабой кислоты (CaCO 3) или сильной кислоты и слабого основания (CuCl 2)) и необратимо (соль слабой кислоты и слабого основания (Ag 2 S)). Соли сильных оснований и сильных кислот (KCl) не гидролизуются.

Они также могут диссоциировать на ионы: частично или полностью, в зависимости от состава.

Существует 10 основных способов получения солей, * основанных на химических свойствах важнейших классов неорганических соединений.

В представленной ниже таблице сведены все эти способы получения солей.

1. Взаимодействие кислот и оснований (реакция нейтрализации), например:

Cu(OH) 2 + H 2 SO 4 = CuSO 4 + 2Н 2 O

2. Взаимодействие основных или амфотерных оксидов с кислотными оксидами, например:

ВаО + СO 2 = ВаСО 3 Сr 2 O 3 + 3SO 3 = Cr 2 (SO 4) 3

3. Взаимодействие основных или амфотерных оксидов с кислотами, например:

К 2 O + 2НСl = 2КСl + Н 2 O

ZnO + 2HNO) = Zn(NO 3) 2 + Н 2 O

4. Взаимодействие оснований с кислотными оксидами, например:

Са(ОН) 2 + N 2 O 6 = Ca(NO 3) 2 + Н 2 O

5. Взаимодействие щелочей с солями, например:

2LiOH + SnCl 2 = 2LiCl + Sn(OH) 2

6. Взаимодействие солей с кислотами, например:

BaCl 2 + H 2 SO 4 = BaSO 4 + 2НС1

К 2 СO 3 + 2НС1 = 2KCl + СO 2 + Н 2 O

7. Взаимодействие солей друг с другом, например:

Na 2 CO 3 + ВаС1 2 = ВаСO 3 ↓ + 2NaCI

8. Взаимодействие солей с металлами, например:

CuCl 2 + Ni = NiCl 2 + Сu

9. Взаимодействие металлов с кислотами.

При взаимодействии большинства кислот (кроме HNO 3 и конц. H 2 SO 4) с металлами, находящимися в ряду напряжений до водорода, наряду с солью образуется водород, например:

Аl + 6НС1 =2А1С1 3 + 3Н 2

Азотная кислота и конц. серная кислота при взаимодействии с металлами также образуют соли, но вместо водорода образуются другие продукты.

Взаимодействие металлов с неметаллами. Этим способом могут быть получены соли некоторых бескислородных кислот, например:

2Fe + 3С1 2 = 2FeCl 3

Специфические методы получения

1. Взаимодействие металлов, оксиды и гидроксиды которых амфотерны, со щелочами. Например, при сплавлении цинка с гидроксидом калия образуется соль - цинкат калия:

Zn (тв.) + 2КОН (тв.) = K 2 ZnO 2 + Н 2



С водным раствором щелочи цинк образует комплексную соль - тетрагидроксоцинкат калия:

Zn + 2КОН + 2Н 2 O = K 2 + Н 2

2. Сплавление солей с некоторыми кислотными оксидами.

При этом нелетучий кислотный оксид вытесняет из соли летучий кислотный оксид. Например:

К 2 СO 3 + SiO 2 = K 2 SiO 3 + СO 2

3. Взаимодействие щелочей с галогенами, например:

С1 2 + 2КОН = КС1 + КСlO + Н 2 O

3С1 2 + 6КОН = 5КС1 + КСlO 3 + 3Н 2 O

4. Взаимодействие галогенидов металлов с галогенами. Более активный галоген вытесняет менее активный из раствора его соли, например:

2КВr + Сl 2 = 2КСl + Вr 2

Применение солей в медицине

Натрия хлорид: При дефиците натрия хлорида в организме он вводится внутривенно или подкожно в виде 0,9%-ного водного раствора, называемого изотоническим. Введение его выравнивает и нормализует осмотическое давление крови. Гипертонические растворы натрия хлорида (3%-нын, 5%-ный, 10%-ный) применяют наружно для компрессов и примочек при лечении гнойных ран. Благодаря осмотическому влиянию эти растворы способствуют отделению гноя из ран. Натрия хлорид используют также для ванн, обтираний, полосканий при заболеваниях верхних дыхательных путей.

Калия хлорид: Основным показанием к применению калия хлорида является нарушение сердечного ритма, особенно в связи с интоксикацией сердечными гликозидами, что связано с обеднением клеток миокарда ионами калия.

Бромиды применяются в качестве успокаивающих средств. Успокаивающее действие препаратов брома основано на их способности усиливать процессы торможения в коре головного мозга. Поэтому бромиды находят применение при неврастении, повышенной раздражительности.

Йодиды применяются как носители йода при гипертиреозе, эндемическом зобе. Если пища или вода не содержат достаточного количества йода, как это бывает в некоторых горных местностях, у местного населения появляется заболевание - кретинизм или зоб.

Калия перманганат: вследствие сильных окислительных свойств применяется как хорошо дезинфицирующее вещество. Калия перманганат применяется как антисептическое средство наружно в водных растворах различной концентрации для промывания ран, полоскания горла, в гинекологической практике, при ожогах кожи.

Натрия тиосульфат: применение натрия тиосульфата основано на его свойстве выделять серу. Препарат используется в качестве противоядия при отравлениях галогенами, цианидами и синильной кислотой. Препарат может использоваться также при отравлении соединениями мышьяка, ртути, свинца. Натрия тиосульфат применяется также при аллергических заболеваниях, артритах, невралгии внутривенно в виде 30%-ного водного рствора.

Натрия сульфат: Глауберова соль применяется в медицине при запорах, как слабительное средство внутрь по 15-30 г на прием. Эта соль может назначаться также как противоядие при отравлениях солями свинца, с которыми дает нерастворимые осадки.

Магния сульфат: принимают внутрь при запорах, в качестве слабительного по 15-30 г на прием. Принимают как спазмолитическое средство при гипертонической болезни в виде 25%-ного раствора (подкожно); для обезболивания родов внутримышечно по 10-20 мл 25%-ного раствора; в качестве противосудорожного средства; как желчегонное средство внутрь в виде 25%-ного раствора.

Магния карбонат: применяется как вяжущее средство. Назначается внутрь по 1-3 г при повышенной кислотности желудочного сока и как легкое слабительное. Входит в состав зубных порошков.

Натрия нитрит : применяют как сосудорасширяющее средство при стенокардии, мигрени или подкожно. Для подкожных инъекций используется обычно в ампулах в виде 1%-ного раствора. Натрия нитрит также находит применение при отравлениях цианидами.

Натрия тетраборат: используется в виде 1-2%-ного раствора для полоскания горла, в мазях и присыпка.

Ионы кальция 6 усиливают жизнедеятельность клеток, способствуют сокращению скелетных мышц и мышцы сердца, они необходимы для формирования костной ткани, свертывание крови происходит только в присутствии ионов кальция. Из солей кальция в медицине применяются кальция сульфат жженый (в стоматологической практике). Растворы солей кальция снимают зуд, вызванный аллергическим состоянием, поэтому их относят к антиаллергическим веществам.

Бария сульфат : нерастворим ни в воде, ни в кислотах, ни в органических растворителях, а поэтому не ядовит. Применение ВаSО 4 в медицине основано на его непроницаемости для рентгеновских лучей, что используется в рентгенологии для получения контрастных рентгеновских снимков и при рентгеноскопическом исследовании пищеварительного тракта. Принимают в виде смешанного с водой - бариевой кашицы. Этой массой заполняют желудок для задержки рентгеновских лучей. Через определенное время она полностью выводится из организма.

Цинка сульфат : применяется в медицине издавна под названием белого купороса, которое объясняется тем, что эта соль бесцветна в отличие от медного и железного купороса. Применяется наружно как антисептическое и вяжущее средство в глазной практике.

Литература:

Основные источники:

1. Пустовалова Л.М., Никанорова И.Е. «Неорганическая химия», Ростов-на-Дону. Феникс. 2005.

Дополнительные источники:

1. Ахметов Н.С. «Общая и неорганическая химия», М., Высшая школа, 2009.

2. Глинка Н.Л. «Общая химия», КноРус, 2009.

3. Кузьменко Н.Е., Еремин В.В. «Начала химии». Современных курс для поступающих в вузы., М., Экзамен, 2002.

4. Хомченко Г.П. «Химия для поступающих в вуз». М., Новая Волна, 2007.

5. Чернобельская Г.М., Чертков И.Н. Химия: Учебное пособие для медицинских образовательных учреждений. – М.: Дрофа. 2005.

6. Оганесян Э.Г., Книжник А.З. «Неорганическая химия». М. Медицина. 1989.